URCap Software Development Tutorial Swing

Universal Robots A/S
Version 1.13.0

Abstract

URCaps make it possible to seamlessly extend any Universal Robot with customized func-
tionality. Using the URCap Software Platform, a URCap developer can define customized
installation screens and program nodes for the end user. These can, for example, encapsu-
late new complex robot programming concepts, or provide friendly hardware configuration
interfaces.

This tutorial explains how to use the URCap Software Platform version 1.13.0 to develop
and deploy URCaps with Swing-based user interfaces for PolyScope version 5.11.0 running
on e-Series robots. Older PolyScope versions can be targeted using older versions of the
URCap Software Platform. URCaps can be developed for CB3 robots with PolyScope
version 3.3.x to 3.15.x using version 1.12.0 or older of the URCap Software Platform.

URCap Development Tutorial 1 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

0 Contents UNIVERSAL ROBOTS

Contents
1 Introduction 3
1.1 Features in URCap Software Platform 1.13.0 3
2 Prerequisites 5
3 URCap SDK 6
4 Building and deploying URCaps 8
4.1 Buildingo 8
4.2 Manual Deployment using PolyScope 8
5 Structure of a URCap Project 13
6 Deployment with Maven 16
7 Contribution of an Installation Node 17
7.1 UI of the Installation Node View 17
7.2 Making the customized Installation Node available to PolyScope 19
7.3 Functionality of the Installation Node 20
7.4 Life Cycle of Contributions and Views 22
8 Contribution of a Program Node 23
8.1 UI of the Program Node View 23
8.2 Linking View and Contribution 25
8.3 Making the customized Program Nodes available to PolyScope 25
8.4 Functionality of the Program Node 27
8.5 Updating the data model 30
8.5.1 Restrictions 30
8.5.2 Undo/redo Functionality 30
8.6 Loading Programs with Program Node Contributions 31
8.7 Life Cycle of Contributions and Views 31
9 Contribution of a Daemon 33
9.1 Daemon Service oL 33
9.2 Interaction with the Daemon 34
9.3 C/C++ Daemon Executables 36
9.4 Tying the different Contributions together 37
10 URCap Examples Overview 39
10.1 Regular Samples 39
10.2 Driver Samples 45
11 Creating new thin Projects using a Maven Archetype 50
12 Compatibility 53
12.1 Robot Series Compatibility oo 53
12.1.1 Compatibility Flags o 53
12.1.2 Installation and Startup of URCaps 54
12.1.3 Updating Existing URCaps, 54
12.2 API Compatibility 55
12.2.1 Advanced compatibility 56

URCap Development Tutorial 2 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

0 Contents

UNIVERSAL ROBOTS

13 Exception Handling
14 Troubleshooting
A URCaps and Generated Script Code

B My Daemon Program and Installation Node

58

59

61

62

URCap Development Tutorial 3

Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

1 Introduction UNIVERSAL ROBOTS

1 Introduction

The first official version of the URCap Software Platform (version 1.0.0) was released with
PolyScope version 3.3.0 running on CB3 robots. This tutorial describes features supported in
version 1.13.0 of the URCap Software Platform which is released together with PolyScope ver-
sion 5.11.0 for e-Series robots. To create URCaps for PolyScope version 3.3.x to 3.15.X running
on CB3 robots, older versions of the URCap Software Platform must be used.

This platform can be used to develop external contributions to PolyScope that are loaded when
PolyScope starts up. This makes it possible for a URCap developer to provide customized func-
tionality within PolyScope.

For example, a customized installation screen can serve the end user to comfortably configure a
new tool. Similarly, a customized program node may serve as a way to perform complex tasks
while hiding unnecessary detail.

The layout of a customized screen, the behaviour of a customized node, data persistence and
script code generation is all implemented in Java. The URCap along with its resources is pack-
aged and distributed as a single Java Jar file with the .urcap file extension. A URCap can be
installed from the URCap Settings/Setup screen in PolyScope.

The tutorial is organized in the following manner:

e Section 2. Prerequisites and 3. URCap SDK explain what you need to start developing
URCaps.

e Section 4. Building and deploying URCaps to 6. Deployment with Maven guide you
through the basic project setup including build and deployment.

e Section 7. Contribution of an Installation Node to 9. Contribution of a Daemon introduces
the concept behind URCaps and explains the different software components.

e Section 10. URCap Examples Overview provides an overview of technical URCap examples
distributed with the SDK that focus on specific features of the URCap API.

e Section 11. Creating new thin Projects using a Maven Archetype demonstrates how to
create an empty URCap project. We recommend that you also have a look at the examples
when you want to start from scratch.

e Section 14. Troubleshooting describes different debugging and troubleshooting options.
Also visit the support forum at www.universal-robots.com/plus.

To get started we use the Hello World Swing and the My Daemon Swing URCaps as running
examples. These are very simple and basic URCaps.

1.1 Features in URCap Software Platform 1.13.0
The following entities can be contributed to PolyScope using a URCap:

e Customized installation nodes and corresponding screens
e Customized program nodes and corresponding screens
e Daemon executables that run as separate background processes on the control box.

The customized installation nodes support:

URCap Development Tutorial 4 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

1 Introduction UNIVERSAL ROBOTS

e Saving and loading of data underlying the customized installation node as part of the
currently loaded installation in PolyScope.

e Script code that an installation node contributes to the preamble of a robot program.
The customized program nodes support:

e Saving and loading of data underlying the customized program nodes as part of the cur-
rently loaded PolyScope program.

e Script code that a program node contributes to the script code generated by the robot
program.

URCap Development Tutorial 5 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

2 Prerequisites UNIVERSAL ROBOTS

2 Prerequisites

A working version of Java SDK 6 is required for URCap development along with Apache Maven
3.0.5. You will also need PolyScope version 5.11.0 in order to install the developed URCap, if it
is using URCap API version 1.13.0. Previous versions of the API will have lower requirements
for the PolyScope version. Any Universal Robots robot (e.g., a UR3, UR5, UR10, etc.) can be
used for that purpose or the Universal Robots offline simulator software (URSim). PolyScope
and the offline simulator can be found in the download area of the tech support website at:

www.universal-robots.com/support

Select the applicable version and follow the given installation instructions. The offline simulator
is available for Linux and non-Linux operating systems through a virtual Linux machine.

The script language and pre-defined script functions are defined in the script manual, which can
also be found in the download area of the tech support website.

The URCap SDK is freely available on the Universal Robots+ website at:
https://plus.universal-robots.com

It includes the sources for the URCap examples.
The My Daemon Swing example of this tutorial additionally requires either Python 2.5 (com-
patible) or the Universal Robots urtool3 cross-compiler toolchain. The urtool3 cross-compiler

is included in the SDK.

The following section 3. URCap SDK describes the content of the URCap SDK.

URCap Development Tutorial 6 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

3 URCap SDK UNIVERSAL ROBOTS

3 URCap SDK

The URCap SDK provides the basics to create a URCap. It contains a Java package with
the API that the developer will program against, documentation, the Hello World Swing and
other URCap examples, the urtool3 cross-compiler toolchain and means of easily creating a new
empty Maven-based template URCap project (See section 11. Creating new thin Projects using
a Maven Archetype) as well as easily updating an existing URCap.

com.ur.urcap.sdk
, artifacts

. api

1.13.0
com.ur.urcap.api-1.13.0. jar
com.ur.urcap.api-1.13.0-javadoc. jar
com.ur.urcap.api-1.13.0-sources. jar
| archetype

com.ur.urcap.archetype-1.13.0. jar

. other
commons-httpclient-3.1.0.0.jar
ws-commons-util-1.0.2.0.jar
xmlrpc-client-3.1.3.0. jar
xmlrpc-common-3.1.3.0. jar

, doc

urcap_tutorial_html.pdf

urcap_tutorial_swing.pdf

program_node_configuration.pdf

working_with_variables.pdf

., samples

| driver

| html

L

. swing

| com.ur.urcap.examples.helloworldswing

E(See Figure 2, page 13)

, com.ur.urcap.examples.mydaemonswing

E(See Figure 3, page 14)

| _urtool

L urtool3_0.3_amd64.deb
| install.sh

| newURCap.sh

| readme.txt

| upgradeURCap.sh

Figure 1: File structure of the URCaps SDK

URCap Development Tutorial 7 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

3 URCap SDK UNIVERSAL ROBOTS

The URCap SDK is distributed as a single ZIP file. Figure 1 shows the structure of the file.

A description of the directories and files contained in this file is given below:

/artifacts/: This directory holds all released versions of the URCap API in separate folders, the
Maven archetype and other necessary files. Each folder named with a version number holds
the Java packages, (e.g. com.ur.urcap.api-1.13.0%.jar files), that contains Java interfaces,
Javadoc and sources of the URCap API that are necessary to implement the Java portion
of a URCap. The Maven archetype folder holds the com.ur.urcap.archetype-1.13.0.jar
file, that can be used to create a new empty template URCap project.

/doc/: The directory contains this tutorial (both in a HTML-based version and a Swing-based
version) as well as a document describing how to configure child program nodes in a sub-
tree and a document explaining how to work with variables. Included is also a document
with a guide on how to convert an existing URCap with HTML-based user interface to a
Swing-based one.

/samples/: A folder containing example projects demonstrating different features of the soft-
ware framework. A description of the examples is found in section 10. URCap Examples
Overview.

/urtool/: Contains the urtool3 cross-compiler toolchain that should be used when building
C/C++ daemon executables for the CB3.0/3.1 and CB5.0 control boxes.

install.sh: A script which should be run as a first step to install the URCap SDK and urtool3
cross-compiler toolchain (see section 4. Building and deploying URCaps). This will install
all released versions of the URCap API and the Maven archetype in your local Maven
repository as well as the cross-compiler toolchain in /opt/urtool-3.0 (should you choose
$0).

newURCap.sh: A script which can be used to create a new empty Maven-based template URCap
project in the current working directory (see section 11. Creating new thin Projects using
a Maven Archetype).

upgradeURCap.sh: A script which can be used to update an existing URCap (project) to spec-
ify which robot series the URCap is compatible with (see section 12.1. Robot Series
Compatibility).

readme.txt: A readme file describing the content of the SDK.

URCap Development Tutorial 8 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

4 Building and deploying URCaps UNIVERSAL ROBOTS

4 Building and deploying URCaps

4.1 Building

To get started unzip the SDK zip file to a suitable location and run the install script inside the
target location:

1 $./install.sh

This installs the SDK on your machine.

Next, enter the samples/swing/com.ur.urcap.examples.helloworldswing directory and compile
the example by:

1 $ cd samples/swing/com.ur.urcap.examples.helloworldswing
2 $ mvn install

A new URCap with file name target/helloworldswing-1.0-SNAPSHOT.urcap has been born!

A similar procedure should be followed to compile the other URCap examples.

4.2 Manual Deployment using PolyScope
The URCap can be added to PolyScope with these steps:

1. Copy the helloworldswing-1.0-SNAPSHOT.urcap file from above to your programs directory
used by PolyScope or to a USB stick and insert it into a robot.

2. CB3 robot: Tap the Setup Robot button from the PolyScope Robot User Interface
Screen (the Welcome screen)

e-Series robot: In the right corner of the Header, tap the Hamburger menu and select
Settings

3. CB3 Robot: Tap the URCaps button from the Setup Robot screen.

e-Series robot: In the Settings screen under System, select URCaps.
4. Tap the + button.
5. Select a .urcap file, e.g. helloworldswing-1.0-SNAPSHOT.urcap and tap the Open button.

6. Restart PolyScope using the Restart button in the bottom of the screen:

URCap Development Tutorial 9 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

4 Building and deploying URCaps

UNIVERSAL ROBOTS

Setup Robot

@

| Initialize Robot

‘ URCaps

Active URCaps

| Calibrate Screen

© Hello world swing

| URCaps

| Network

URCap Information

| Language

URCap name: Hello World Swing
Version: 1.0.0.SNAPSHOT

Developer: Universal Robots

| Set Password

Contact Info: Energivej 25, 5260 Odense S, Denmark
Description: Hello World Swing sample URCap

Copyright: Copyright (C) 2008-2020 Universal Robots. All Rights
rved

Time License Type: Sample license

License:

Example:
Copyright (c) ,

Update
All rights reserved.

Ty clim st sk A

J The changes require a restart to take effect.

R § - =

System
Backup

Robot
Registration

URCaps

Remote
Control

Constrained
Freedrive

Network

Update

Hello World swin:
° g

CB3 robot

URCap Information

URCap name: Hello World Swing

Version: 1.0.0.SNAPSHOT

Developer: Universal Robots

Contact Info: Energivej 25, 5260 Odense S, Denmark
Description: Hello World Swing sample URCa)
Copyright: Copyright (C) 2008-2020 Universal Robots. All Rights Reserved
License Type: Sample license

License:

Example:

Copyright (c) ,

All Tights reserved.

Redistritntion and nse in sonree and hinary farms with ar withont

Inactive URCaps
Remote TCP & Toolpath

The changes reguire a restart to talke effect.

Power off

e-Series robot

When the Hello World Swing URCap is deployed, the following installation screen is accessible

from the Installation

tab:

URCap Development Tutorial 10

Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

4 Building and deploying URCaps UNIVERSAL ROBOTS

D File 13:07:46 CCCcC 9

Program f’lnstallatinn Move | /O | Log

TCP Configuration —

Hello World

Mounting
I/0 setup The popup title below is shared between all Hello Werld program nodes.
The title cannot be empty.
qu Safety
Popup title: Hello World
\Variables
MODBUS
Features a
Base
Tool

Smooth Transition
IConveyor Tracking
EtherNet/IP
PROFINET

Hello World

Default Program

[Ii [»]

CB3 robot

R

Run Jlation

P alation |
) Safety The popup title below is shared between all Hello World program nodes
The title cannot be empty.
> Fieldbus Popup title: | Hello World
» URCaps

Hello World

e-Series robot

Furthermore, the Hello World program node is available in the Program tab. On CB3 robots,
the node is visible within the Structure tab after selecting the URCaps subtab:

URCap Development Tutorial 11 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

4 Building and deploying URCaps UNIVERSAL ROBOTS

D File 12:59:29 cccc 0
Program | Installation | Move [/O | Log
=L d [c d | Graphics | Structure | Variables |
¥ Robot Program .
= <empty> Program Structure Editor
Set placement of node
Insert
Basic | Advanced | Wizards | URCaps |
‘ Hello World ‘
Edit
| 4 Move ‘ ‘ Copy H Paste | ‘ Suppress |
q” H ” — —~ | ¥ Move ‘ ‘ Cut H Delete |

0 Simulation
Qo MBI spees ——Cnoon

CB3 robot

On e-Series robots, the node is visible on the left of the screen after tapping URCaps:

Run | Pragram

» Advanced
1 ¥ Robot Program P rogram
> Templates 2 =l <empry> Here you can program your robot to do tasks.
URCaps
To program your robot, select the nodes from the Node List and they will appear on

Hello World the Program Tree.

Node List Program Tree

a

4% oo xBBpEZ

[0 Add Before Start Sequence
[Set Initial Variable Values

[Program Loops Forever

A9 KB REE

e-Series robot

The screen for the program node looks as follows:

URCap Development Tutorial 12 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

4 Building and deploying URCaps UNIVERSAL ROBOTS

& File 13:01:09 Cccc 0

Program | Installation | Move [/0 | Log

<unnamed=> C d [Graphics | Structure | variables |
¥ Robot Program
¢V Hello World: Bob
—empty= Hello World

This pregram node will open a popup on execution.

Preview

Title: Hello World

Message: Hello Bob, welcome to PolyScope!

Qe[>

Qo [][] st ——r00

CB3 robot

P8 2 ¢

run | Pragram
ic

obot Program H
ello World
2 @Y Hello World: Bob
“ URCaps 3 =) <l - This program node wil open a popup on execution

Hello World Enter your name: Bob

Preview

Title: Hello World

Message: Hello Bob, welcome to PolyScope!

*$SCKBERTS

e-Series robot

When the program displayed above runs, a pop-up is shown with the title ”Hello World” (con-
figured in the installation screen) and message ”Hello Bob, welcome to PolyScope!” (using the
name defined in the program node).

URCap Development Tutorial 13 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

5 Structure of a URCap Project UNIVERSAL ROBOTS

5 Structure of a URCap Project

A URCap is a Java Archive (.jar) file with the .urcap file extension. The Java file may contain
a number of new installation nodes, program nodes, and daemon executables.

com.ur.urcap.examples.helloworldswing
pom.xml
assembly.xml

src
Lg,main
L java
com
Lg,ur
Lg,urcap
examples
helloworldswing
Lg,impl
Activator. java
HelloWorldInstallationNodeContribution. java
HelloWorldInstallationNodeService. java
HelloWorldInstallationNodeView. java
HelloWorldProgramNodeContribution. java
HelloWorldProgramNodeService. java
HelloWorldProgramNodeView. java
Style. java
V3Style. java
V6Style. java
, _Tresources
LA,META-INF
LA,LICENSE

Figure 2: Structure of the Hello World Swing URCap project

Figure 2 shows the structure of the Hello World Swing URCap project. This project consists of
the following parts:

1. A Java view part consisting of two screens with the layout specified in the two files
HelloWorldProgramNodeView.java and HelloWorldInstallationNodeView.java.

2. A Java implementation for the screens above, namely:

(a) HelloWorldInstallationNodeService.java and
HelloWorldInstallationNodeContribution. java

(b) HelloWorldProgramNodeService.java and
HelloWorldProgramNodeContribution. java

3. A license META-INF/LICENSE with the license information that is shown to the user when
the URCap is installed.

4. Maven configuration files pom.xml and assembly.xml for building the project.

The My Daemon Swing URCap is an extended version of the Hello World Swing URCap, that
exemplifies the integration of an external daemon process. Figure 3 shows the structure of the
My Daemon Swing URCap project. Compared to the Hello World Swing project it additionally
offers the following parts:

URCap Development Tutorial 14 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

5 Structure of a URCap Project UNIVERSAL ROBOTS

1. A Python 2.5 daemon executable in the file hello-world.py.
2. C++ daemon sources in directory daemon.

3. A Java implementation MyDaemonDaemonService.java that defines and installs a daemon
and makes it possible to control the daemon.

The Python and C++ daemons are alternatives that provide the same functionality.

com.ur.urcap.examples.mydaemonswing
pom.xml
assembly.xml
daemon

E(See Figure 6, page 37)
src
Lg,main
| java
com

Lg,ur
Lg,urcap

examples

mydaemonswing

Lg,impl
Activator. java
MyDaemonDaemonService. java
MyDaemonInstallationNodeContribution. java
MyDaemonInstallationNodeService. java
MyDaemonInstallationNodeView. java
MyDaemonProgramNodeContribution. java
MyDaemonProgramNodeService. java
MyDaemonProgramNodeView. java
Style. java
UnknownResponseException. java
V3Style. java
V6Style. java
XMLRPCMyDaemonInterface. java

, _resources
, com

Lg,ur
Lg,urcap

examples
mydaemon
Lg,impl
daemon
Lg,hello—world.py

| META-INF
LA,LICENSE

Figure 3: Structure of the My Daemon Swing URCap project

URCap Development Tutorial 15 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

5 Structure of a URCap Project UNIVERSAL ROBOTS

The services:
® HelloWorldInstallationNodeService.java
® HelloWorldProgramNodeService. java

are registered in Activator.java and thereby a new installation node and program node are of-
fered to PolyScope. The My Daemon Swing additionally registers its MyDaemonDaemonService. java
service to make the daemon executable available to PolyScope.

The file pom.xml contains a subsection (under the <properties> section) with a set of properties
for the URCap with meta-data specifying the vendor, contact address, copyright, description,
and short license information which will be displayed to the user when the URCap is installed
in PolyScope. See Listing 1 for the Hello World Swing version of these properties.

Listing 1: Section with meta-data properties inside the pom.xml file for the Hello World Swing

URCap

1 <1 = =skoskoskook ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ko ok ok ok ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok sk ok ok kR kR ok ok ok ok kk ok — — >

2 <I-- Note: Update this section with relevant meta data -=>

3 <!-- that comes along with your URCap -=>

4 Q1 = —kokokok ok ok ok sk ok sk sk sk ko ok ok ok ok ok ok ok ok ok ok ok ok sk ok sk ok ok sk sk ok ok kR ok ok ok ok ok Rk kR k — — >

5 <= =skkokokkkkkkkkkkkkkkkkx BEGINNING OF URCAP META DATA kokokskkskokkkkkkokokkkkkk — —>

6 <urcap.symbolicname>com.ur.urcap.examples.helloworldswing</urcap.symbolicname>
7 <urcap.vendor>Universal Robots</urcap.vendor>

8 <urcap.contactAddress>Energivej 25, 5260 Odense S, Denmark</urcap.

contactAddress>

<urcap.copyright >Copyright (C) 2009-2021 Universal Robots. All Rights Reserved
</urcap.copyright>

10 <urcap.description>Hello World Swing sample URCap</urcap.description>

11 <urcap.licenseType>Sample license</urcap.licenseType>

12 <urcap.compatibility.CB3>true</urcap.compatibility.CB3>

13 <urcap.compatibility.eSeries>true</urcap.compatibility.eSeries>

14 <V ——sskkskockkockkokkkkkkkkkkkkkk END OF URCAP META DATA skskokokokokoskokskkskkoskokskokkokkokokk — — >

©

The URCap meta-data subsection also contains two boolean compatibility flag properties (urcap.
compatibility.CB3 and urcap.compatibility.eSeries) which specify the URCap’s compatibility with
the CB3 and the e-Series robot series, respectively. See section 12.1. Robot Series Compatibility
for more information about these compatibility flags.

URCap Development Tutorial 16 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

6 Deployment with Maven UNIVERSAL ROBOTS

6 Deployment with Maven

In order to ease development, a URCap can be deployed using Maven.
Deployment to a robot with Maven Given the IP address of the robot, e.g. 10.2.128.64,
go to your URCap project folder and type:

1 $ cd samples/swing/com.ur.urcap.examples.helloworldswing
2 $ mvn install -Premote -Durcap.install.host=10.2.128.64

and the URCap is deployed and installed on the robot. During this process PolyScope will be
restarted.

You can also specify the IP address of the robot via the property urcap.install.host inside the
pom.xml file. Then you can deploy by typing:

1 $ cd samples/swing/com.ur.urcap.examples.helloworldswing
2 $ mvn install -Premote

Deployment to URSim If you are running Linux then URSim can be installed locally.
Otherwise it needs to run in a virtual machine (VM). It is possible to deploy to both environments
with Maven. As shown above parameters can be supplied either directly on the command line
or in the pom.xml file.

e To deploy to a locally running URSim specify the path to the extracted URSim with the
property ursim.home.

e To deploy to a URSim running in a VM specify the IP address of the VM using the
property ursimvm.install.host.

Once the properties are configured you can deploy to a local URSim by using the ursim profile:

1 $ cd samples/swing/com.ur.urcap.examples.helloworldswing
2 $ mvn install -P ursim

or the URSim running in a VM using the ursimvm profile:

1 $ cd samples/swing/com.ur.urcap.examples.helloworldswing
2 $ mvn install -P ursimvm

Note, if you are using VirtualBox to run the VM you should make sure that the network of the
VM is operating in bridged mode.

URCap Development Tutorial 17 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

10.2.128.64

7 Contribution of an Installation Node

UNIVERSAL ROBOTS

7 Contribution of an Installation Node

A URCap can contribute installation nodes. An installation node will support a customized

installation node screen and customized functionality.

7.1 UI of the Installation Node View

The layout of a customized installation node screen is defined by a Java class implementing the
SwingInstallationNodeView interface where the Swing GUI framework is used to create the user
interface (UI). The implementation must specify the associated installation node contribution
implementing the installation node’s functionality (described in section 7.3. Functionality of the

Installation Node) as a type variable.

Listing 2: The view (UI) of the customized Hello World installation screen

1
2
3

© 00~ Ok

10

12
13
14

16
17
18
19
20

package com.ur.urcap.examples.helloworldswing.impl;

import com.ur.urcap.api.contribution.installation.swing.
SwingInstallationNodeView;

import com.ur.urcap.api.domain.userinteraction.keyboard.KeyboardTextInput;

import
import
import
import
import
import
import
import
import
import
import
import
import

javax

javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.

java.
java.
java.
java.

.swing.
swing.
swing.
swing.
swing.
swing.
swing.

swing

awt.Co
awt.Di
awt.ev
awt.ev

swing.

BorderFactory;

Box;

BoxLayout;

JLabel;

JPanel;

JTextField;
JTextPane;
.text.SimpleAttributeSet;
text.StyleConstants;
mponent ;

mension;

ent .MouseAdapter;

ent .MouseEvent;

public class HelloWorldInstallationNodeView implements

SwingInstallationNodeView<HelloWorldInstallationNodeContribution> {

private final Style style;
private JTextField jTextField;

public HelloWorldInstallationNodeView(Style style) {
this.style = s

}

@0verride
public void buildUI(JPanel jPanel, final

HelloWorldInstallationNodeContribution installationNode) {

tyle;

jPanel.setlLayout (new BoxLayout (jPanel, BoxLayout.Y_AXIS));

jPanel.add(createInfo());
jPanel.add(createVerticalSpacing());
jPanel.add(createInput (installationNode));

}

private Box createInfo() {
Box infoBox =
infoBox.setAlignmentX (Component . LEFT_ALIGNMENT) ;
JTextPane pane
pane.setBorder (BorderFactory.createEmptyBorder ());
SimpleAttributeSet attributeSet = new SimpleAttributeSet();
StyleConstants.setLineSpacing(attributeSet, 0.5f);
StyleConstants.setLeftIndent (attributeSet, 0f);
pane.setParagraphAttributes (attributeSet, false);

Box.createVerticalBox ();

= new JTextPane();

URCap Development Tutorial 18

Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

7 Contribution of an Installation Node UNIVERSAL ROBOTS

47 pane.setText ("The popupytitle below is shared between all Hello World,
programgnodes .\nThe_ title cannot be empty.");

48 pane.setEditable (false);

49 pane.setMaximumSize (pane.getPreferredSize ());

50 pane.setBackground (infoBox.getBackground ());

51 infoBox.add (pane) ;

52 return infoBox;

53 }

54

55 private Box createInput(final HelloWorldInstallationNodeContribution

installationNode) {

56 Box inputBox = Box.createHorizontalBox () ;

57 inputBox.setAlignmentX (Component . LEFT_ALIGNMENT) ;

58

59 inputBox.add (new JLabel ("Popupytitle:"));

60 inputBox.add(createHorizontalSpacing());

61

62 jTextField = new JTextField();

63 jTextField.setFocusable(false);

64 jTextField.setPreferredSize(style.getInputfieldSize ());

65 jTextField.setMaximumSize (jTextField.getPreferredSize ());

66 jTextField.addMouseListener (new MouseAdapter () {

67 @0verride

68 public void mousePressed(MouseEvent e) {

69 KeyboardTextInput keyboardInput = installationNode.

getInputForTextField ();
70 keyboardInput.show(jTextField, installationNode.
getCallbackForTextField ());

71 }

72 B

73 inputBox.add(jTextField);

74

75 return inputBox;

76 ¥

7

78 private Component createHorizontalSpacing() {

79 return Box.createRigidArea(new Dimension(style.getHorizontalSpacing(), 0))

80 }

81

82 private Component createVerticalSpacing() {

83 return Box.createRigidArea(new Dimension(0, style.getVerticalSpacing()));

84 }

85

86 public void setPopupText(String t) {

87 jTextField.setText (t);

88 }

89 }

Listing 2 shows the content of the HelloWorldInstallationNodeView.java file which defines the
layout of the screen used for the Hello World installation node. The class uses various Swing
GUI components to construct the user interface. These components are added to the Jpanel
provided as argument in the buildUI(JPanel, InstallationNodeContribution) method.

The panel has a fixed size that cannot be changed. Margins are already added by PolyScope,
so the entire area of the panel can be used for Ul components. The title will also be set au-
tomatically to the value returned by SwingInstallationNodeService.getTitle(Locale) (described in
section 7.2. Making the customized Installation Node available to PolyScope). It will have a
Swing Ul manager already set, meaning that components without additional styling will look
as native PolyScope ones including the correct font types. In order to resemble PolyScope the
components should therefore only use limited styling, such as font sizes or input field sizes (if
the applied ones are not suitable). Calling methods not supported by PolyScope will result in

URCap Development Tutorial 19 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

7 Contribution of an Installation Node UNIVERSAL ROBOTS

an exception being thrown.

The corresponding installation node contribution is passed as the second argument to the method
buildUI(JPanel, InstallationNodeContribution) to enable the view and the contribution to commu-
nicate with each other in order to pass values and react to events.

This structure creates a model-view separation where the view is created in the aforementioned
class and the model is handled in the contribution. The corresponding Java code is presented
in the following two sections.

7.2 Making the customized Installation Node available to PolyScope

In order to make the layout specified in the view class and the customized installation nodes
available to PolyScope, a Java class that implements the interface swingInstallationNodeService
must be defined. Listing 3 shows the Java code that makes the Hello World installation node
available to PolyScope.

Listing 3: Hello World Installation node service

package com.ur.urcap.examples.helloworldswing.impl;

import com.ur.urcap.api.contribution.ViewAPIProvider;

import com.ur.urcap.api.contribution.installation.ContributionConfiguration;

import com.ur.urcap.api.contribution.installation.CreationContext;

import com.ur.urcap.api.contribution.installation.InstallationAPIProvider;

import com.ur.urcap.api.contribution.installation.swing.
SwingInstallationNodeService;

8 import com.ur.urcap.api.domain.SystemAPI;

9 import com.ur.urcap.api.domain.data.DataModel;

O U W =

11 import java.util.Locale;

13 public class HelloWorldInstallationNodeService implements
SwingInstallationNodeService<HelloWorldInstallationNodeContribution,
HelloWorldInstallationNodeView> {

14

15 @0verride

16 public void configureContribution(ContributionConfiguration configuration) {

17 }

18

19 @0verride

20 public String getTitle(Locale locale) {

21 return "Hello_World";

22 }

23

24 @0verride

25 public HelloWorldInstallationNodeView createView(ViewAPIProvider apiProvider
) A

26 SystemAPI systemAPI = apiProvider.getSystemAPI();

27 Style style = systemAPI.getSoftwareVersion().getMajorVersion() >= 5 ? new

V5Style () : mnew V3Style();

28 return new HelloWorldInstallationNodeView(style);

29 }

30

31 @0verride

32 public HelloWorldInstallationNodeContribution createInstallationNode (
InstallationAPIProvider apiProvider , HelloWorldInstallationNodeView view
, DataModel model, CreationContext context) {

33 return new HelloWorldInstallationNodeContribution(apiProvider, model, view

)
34 }
35 %

URCap Development Tutorial 20 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

7 Contribution of an Installation Node UNIVERSAL ROBOTS

The SwingInstallationNodeService interface requires two type variables for the specific implemen-
tations of the InstallationNodeContribution and SwingInstallationNodeView interface, respectively,
as well as the following methods to be defined:

® getTitle(Locale) returns the title for the node, to be shown on the left side of the Installation
tab to access the customized installation screen. For simplicity, the title is specified simply
as "HelloWorld". In a more realistic example, the return value of the getTitle(Locale)
method would be translated into the language specified by standard Java localization,
based on the provided Locale argument. The title is also used as the fixed header for the
installation node screen in PolyScope. The method is only called once.

® createView(ViewAPIProvider) returns an instance of the view (described in section 7.1. UI
of the Installation Node View). Use the ViewAPIProvider to access information about the
software version, language settings (can be used to provide a translated UI), etc.

® createlnstallationNode(InstallationAPIProvider, SwingInstallationNodeView, DataModel,
CreationContext) is called by PolyScope when it needs to create an instance of the installa-
tion node. The arguments are:

— InstallationAPIProvider: provides access to various PolyScope domain APIs relevant
for an installation node

— SwingInstallationNodeView: the view instance created by the createview(ViewAPIProvider)
described above

— DataModel: the model for the installation node with automatic persistence support

— CreationContext: the context in which the createInstallationNode(...) is called

The constructor used in the implementation of the method createInstallationNode(...) is
discussed in section 7.3. Functionality of the Installation Node. All modifications to the
supplied data model from the installation node constructor are ignored when existing
installation is loaded. This means that ideally the installation node constructor should
not set anything in the data model.

® configureContribution(ContributionConfiguration) is called once after the service has been
registered. Use the argument supplied to configure the contribution if its default values are
not appropriate (see default values in the Javadoc). If the default values are appropriate,
leave this method empty.

7.3 Functionality of the Installation Node

The functionality behind a customized installation node must be defined in a Java class that
implements the InstallationNodeContribution interface. Listing 4 shows the Java code that defines
the functionality of the Hello World installation screen. An instance of this class is returned by
the createInstallationNode(...) method in the HelloWorldInstallationNodeService class described in
previous section.

In essence, the InstallationNodeContribution interface requires the following to be defined:
1. What happens when the user enters and exits the customized installation screen.

2. Script code that should be added to the preamble of any program when run with this
URCap installed.

In addition, the class contains code that links to the view (mentioned in section 7.1. UI of the
Installation Node View), gives access to a data model with automatic persistence and UR-Script
generation associated with the node.

URCap Development Tutorial 21 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

7 Contribution of an Installation Node UNIVERSAL ROBOTS

Listing 4: Java class defining functionality for the Hello World installation node

= O ©0oNO0 Utk Wik

— =

12

14
15
16
17
18
19
20

21

package com.ur.urcap.examples.helloworldswing.impl;

import com.ur.urcap.api.contribution.InstallationNodeContribution;

import com.ur.urcap.api.contribution.installation.InstallationAPIProvider;
import com.ur.urcap.api.domain.data.DataModel;

import com.ur.urcap.api.domain.script.ScriptWriter;

import com.ur.urcap.api.domain.userinteraction.keyboard.KeyboardInputCallback;
import com.ur.urcap.api.domain.userinteraction.keyboard.KeyboardInputFactory;
import com.ur.urcap.api.domain.userinteraction.keyboard.KeyboardTextInput;

public class HelloWorldInstallationNodeContribution implements
InstallationNodeContribution {

private static final String POPUPTITLE_KEY = "popuptitle";
private static final String DEFAULT_VALUE = "Hello,World";
private final HelloWorldInstallationNodeView view;

private final KeyboardInputFactory keyboardFactory;

private DataModel model;

public HelloWorldInstallationNodeContribution(InstallationAPIProvider
apiProvider, DataModel model, HelloWorldInstallationNodeView view) {
this.keyboardFactory = apiProvider.getUserInterfaceAPI().
getUserInteraction () .getKeyboardInputFactory () ;
this.model = model;
this.view = view;

}

@0verride

public void openView () {
view.setPopupText (getPopupTitle ());

}

@0verride
public void closeView () {

}

public boolean isDefined () {
return !getPopupTitle().isEmpty ();
}

@0verride
public void generateScript(ScriptWriter writer) {
// Store the popup title in a global variable so it is globally available
to all Hello World program nodes.
writer.assign("hello_world_swing_popup_title", "\"" + getPopupTitle() + "
\II");
}

public String getPopupTitle() {
return model.get (POPUPTITLE_KEY, DEFAULT_VALUE);
}

public void setPopupTitle(String message) {
if ("".equals(message)) {
resetToDefaultValue () ;
} else {
model.set (POPUPTITLE_KEY, message);
}
}

private void resetToDefaultValue() {
view.setPopupText (DEFAULT_VALUE) ;
model.set (POPUPTITLE_KEY, DEFAULT_VALUE);

URCap Development Tutorial 22 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

7 Contribution of an Installation Node UNIVERSAL ROBOTS

61 }

62

63 public KeyboardTextInput getInputForTextField() {

64 KeyboardTextInput keyboardInput = keyboardFactory.
createStringKeyboardInput () ;

65 keyboardInput.setInitialValue (getPopupTitle());

66 return keyboardInput;

67 }

68

69 public KeyboardInputCallback<String> getCallbackForTextField () {

70 return new KeyboardInputCallback<String>() {

71 @Override

72 public void onOk(String value) {

73 setPopupTitle (value);

74 view.setPopupText (value);

75 }

76 };

7 ¥

78}

The data model which was mentioned in section 7.2. Making the customized Installation Node
available to PolyScope is passed into the constructor through a pataMode1l object. All data that
needs to be saved and loaded along with a robot installation must be stored in and retrieved
from this model object.

When the user interacts with the text input field defined in the view, the listener defined there
will request a keyboard from the contribution and when the user accepts, delegate the call to
getCallbackForTextField(). The code within that method takes care of storing the contents of
the text input widget in the data model under the key pPopUPTITLE_KEY whenever the user accepts
what is typed using the keyboard. By saving and loading the robot installation you will notice
that values are stored and read again from and back to the view.

The openview() method is called whenever the user enters the screen. It sets the contents of
the text input field defined in the view to the value stored in the data model. The closeview()
method is called when the user leaves the screen.

Finally, the preamble of each program run with this URCap installed will contain an assignment
in its preamble, as specified in the implementation of the generateScript(Scripturiter) method.
In the assignment, the script variable named "hello_world_swing_popup_title" is assigned to a
string that contains the popup title stored within the data model object.

7.4 Life Cycle of Contributions and Views

Each time a new installation is created or a different installation is loaded, the createview(...)
method in the SwingInstallationNodeService interface (see section 7.2. Making the customized
Installation Node available to PolyScope) is also called and a new view instance should be re-
turned. The createInstallationNode(...) method in the interface SwingInstallationNodeService i
also called to pass in the new DataModel instance.

This means that Java garbage collection has a chance to clean up previous instances in case
any listeners have been forgotten or other potential memory leaks have been created. This also
means that no references to the view instance or contribution instance should be kept outside
these classes. Respecting this will protect PolyScope from running out of memory.

URCap Development Tutorial 23 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

8 Contribution of a Program Node UNIVERSAL ROBOTS

8 Contribution of a Program Node

A URCap can contribute program nodes. A node is supplied by a customized view part and a
part with the customized functionality.

8.1 UI of the Program Node View

The layout for customized program node screens is defined similarly as the layout of customized
installation node screens (see section 7.1. UI of the Installation Node View) by implement-
ing the SwingProgramNodeView interface. The implementation must specify the associated pro-
gram node contribution implementing the functionality of the program nodes (described in
section 8.4. Functionality of the Program Node) as a type variable. The panel provided to the
buildUI (JPanel, ContributionProvider<ProgramNodeContribution>) method has the same restrictions
and properties as described in section 7.1. UI of the Installation Node View.

Listing 5 shows the definition of the layout of a simple program node. It contains a single input
text field where the user can type a name and two labels that provide a preview of the popup
that will be displayed at runtime. A label defined in the view will be used to display the title
set in the installation. The name that is entered by the end user in the Hello World program
node will be used to construct a customized popup message. This message will also be shown
in the preview label with name "previewMessage".

In order to communicate with the corresponding program node contribution implementing
the functionality of the program node itself, a provider is passed as argument to the method
buildUI(JPanel, ContributionProvider<ProgramNodeContribution>). Calling the get() method on the
ContributionProvider object will return the currently selected program node. The provider has a
type variable which corresponds to the associated contribution.

The linking of the view and the program node contributions is presented in the following section.

Listing 5: The view (UI) of the customized Hello World program screen

package com.ur.urcap.examples.helloworldswing.impl;

import com.ur.urcap.api.contribution.ContributionProvider;
import com.ur.urcap.api.contribution.program.swing.SwingProgramNodeView;
import com.ur.urcap.api.domain.userinteraction.keyboard.KeyboardTextInput;

import javax.swing.Box;

import javax.swing.BoxLayout;

9 import javax.swing.JLabel;

10 import javax.swing.JPanel;

11 import javax.swing.JTextField;

12 import java.awt.Component;

13 import java.awt.Dimension;

14 import java.awt.Font;

15 import java.awt.event.MouseAdapter;
16 import java.awt.event.MouseEvent;

0O Uk WN =

18 public class HelloWorldProgramNodeView implements SwingProgramNodeView<
HelloWorldProgramNodeContribution >{

19

20 private final Style style;

21 private JTextField jTextField;

22 private JLabel previewTitle;

23 private JLabel previewlMessage;

24

25 public HelloWorldProgramNodeView(Style style) {
26 this.style = style;

27 }

URCap Development Tutorial 24 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

8 Contribution of a Program Node

UNIVERSAL ROBOTS

28
29
30

44
45
46
47

48

50
51
52
53
54
55

57
58
59
60

61

@0verride

public void buildUI (JPanel jPanel,

}

HelloWorldProgramNodeContribution> provider) {

final ContributionProvider<

jPanel.setLayout (new BoxLayout (jPanel, BoxLayout.Y_AXIS));

jPanel.add(createInfo());

jPanel.add(createVerticalSpacing(style.getVerticalSpacing()));

jPanel.add(createInput (provider));

jPanel.add(createVerticalSpacing(style.getExtralargeVerticalSpacing()));

jPanel.add(createPreview());

private Box createInfo () {

}

Box infoBox = Box.createHorizontalBox();
infoBox.setAlignmentX (Component . LEFT_ALIGNMENT) ;

infoBox.add(new JLabel ("Thisprogramg node,will open,a,popupyon execution."

));

return infoBox;

private Box createInput(final ContributionProvider<

}

HelloWorldProgramNodeContribution> provider) {
Box inputBox = Box.createHorizontalBox();
inputBox.setAlignmentX (Component .LEFT_ALIGNMENT) ;
inputBox.add(new JLabel ("Enter,your name:"));
inputBox.add(createHorizontalSpacing());

jTextField = new JTextField();
jTextField.setFocusable(false);
jTextField.setPreferredSize(style.getInputfieldSize ());

jTextField.setMaximumSize (jTextField.getPreferredSize());

jTextField.addMouseListener (new MouseAdapter () {
@0verride
public void mousePressed(MouseEvent e) {
KeyboardTextInput keyboardInput = provider.get().
getKeyboardForTextField () ;

keyboardInput.show(jTextField, provider.get().getCallbackForTextField

0);
}
B

inputBox.add(jTextField);
return inputBox;

private Box createPreview() {

Box previewBox = Box.createVerticalBox();

JLabel preview = new JLabel("Preview");

preview.setFont (preview.getFont () .deriveFont (Font.BOLD,
getSmallHeaderFontSize ()));

Box titleBox = Box.createHorizontalBox () ;
titleBox.setAlignmentX (Component.LEFT_ALIGNMENT) ;
titleBox.add (new JLabel("Title:"));
titleBox.add(createHorizontalSpacing());
previewTitle = new JLabel("my,title");
titleBox.add(previewTitle);

Box messageBox = Box.createHorizontalBox();
messageBox.setAlignmentX (Component.LEFT_ALIGNMENT) ;
messageBox.add (new JLabel("Message:"));
messageBox.add(createHorizontalSpacing());
previewMessage = new JLabel("my_message");
messageBox.add(previewMessage) ;

previewBox.add(preview) ;

style.

URCap Development Tutorial 25

Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

8 Contribution of a Program Node UNIVERSAL ROBOTS

89 previewBox.add(createVerticalSpacing(style.getLargeVerticalSpacing()));
90 previewBox.add(titleBox);

91 previewBox.add(createVerticalSpacing(style.getVerticalSpacing()));
92 previewBox.add(messageBox) ;

93

94 return previewBox;

95 ¥

96

97 private Component createVerticalSpacing(int height) {

98 return Box.createRigidArea(new Dimension (0, height));

99 ¥

100

101 private Component createHorizontalSpacing() {

102 return Box.createRigidArea(new Dimension(style.getHorizontalSpacing(), 0))
103 }

104

105 public void setPopupText(String popupText) {

106 jTextField.setText (popupText);

107 }

108

109 public void setMessagePreview(String message) {

110 previewMessage.setText (message) ;

111 }

112

113 public void setTitlePreview(String title) {

114 previewTitle.setText (title);

115 }

116 }

8.2 Linking View and Contribution

The view (implementing the SwingProgramNodeView interface) and the program node contribution
(implementing the ProgramNodeContribution interface) must be able to communicate in order to
pass values and react to events. Only one view instance exists and many instances of the con-
tribution could exist.

In order for the view to call methods on the currently selected program node’s underlying con-
tribution, the supplied provider must be used. The get() method on the ContributionProvider
will automatically return the ProgramiodeContribution instance representing the currently selected
program node and in turn its associated data model.

The contribution object on the other hand was instantiated with the one and only view instance
and can call methods on this instance without any further ado.

8.3 Making the customized Program Nodes available to PolyScope

To make the Hello World program node available to PolyScope, a Java class that implements
the swingProgramNodeService interface is required. Listing 6 shows the Java code that makes the
Hello World program node available to PolyScope.

The get1d() method returns the unique identifier for this type of program node. The identifier
will be used when storing programs that contain these program nodes. This method is called
once. Do not change the return value of this method in released URCaps, since it will break
backwards compatibility for existing programs. URCap program nodes in such existing pro-
grams will not be loaded properly and the program can not run anymore.

Its getTitle(Locale) method supplies the text for the button in the Structure Tab that corre-
sponds to this type of program node. It is also used as the title on the Command tab screen

URCap Development Tutorial 26 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

8 Contribution of a Program Node UNIVERSAL ROBOTS

for such nodes. Use the provided Locale if translated titles should be supported. This method
is called once.

Use the argument supplied in the method configureContribution(ContributionConfiguration) tO
configure the program node contribution. This method is called once after the service has been
registered. Use the argument supplied to configure the contribution if its default values are not
appropriate (see default values in the Javadoc). If the default values are appropriate, leave this
method empty. The following properties can be configured:

e Calling setDeprecated() with true makes it impossible to create new program nodes of this
type, but still support loading program nodes of this type in existing programs.

e Calling setChildrenAllowed() with true, signals that it is possible for the program node to
contain other (child) program nodes.

o (Calling setUserInsertable () with false makes the program node programmatically insertable
only (i.e. the end user cannot insert it).

° Calling getProgramDebuggingSupport () returns ProgramDebuggingSupport object that can be used
to customize debugging capabilities of the Program Node and child nodes in subtree.
Debugging features are available on e-Series platform only. Refer to User Manual for
detailed description.

— setAllowBreakpointOnNode() determines if the end user is allowed to set a breakpoint on
or single step this program node.

— setAllowBreakpointOnChildNodesInSubtree() determines if the end user is allowed to set
breakpoint on or single step any child in this program node subtree (only if the child
node itself allows breakpoints).

— setAllowStartFromNode() determines if the end user can start the program directly from
this program node.

— setAllowStartFromChildNodesInSubtree() determines if the end user can start the pro-
gram directly from the selected child in this program node subtree (only if the child
node itself allows it).

Finally, createNode (ProgramAPIProvider, SwingProgramNodeView, DataModel, CreationContext) creates pro-

gram nodes. The arguments are:

® ProgramAPIProvider: provides access to various APIs relevant for a program node.

® SwingProgramNodeView: this is the view instance (described in section 8.1. UI of the Program
Node View) created by the createView(ViewAPIProvider) method

® DataModel: this gives the user a data model with automatic persistence
® CreationContext: the context in which this program node is created

The createliode(. ..) method creates a new Java object for each node of this type occurring in the
program tree. The returned object is used when interacting with the view on the customized pro-
gram node screen for the particular node selected in the program tree. It must use the supplied
data model object to retrieve and store data that should be saved and loaded within the robot
program along with the corresponding node occurrence. Please note that only data related to
the current configuration of that particular program node instance should be stored in the data
model, i.e. no global or shared state, state irrevelant to this node instance, etc. should be stored.

The constructor used in the implementation of the createNode(...) method is discussed in sec-
tion 8.4. Functionality of the Program Node. The createNode(...) method call during program
load is discussed in section 8.6. Loading Programs with Program Node Contributions.

URCap Development Tutorial 27 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

8 Contribution of a Program Node UNIVERSAL ROBOTS

Listing 6: Java class defining how Hello World program nodes are created

1 package com.ur.urcap.examples.helloworldswing.impl;

2

3 import com.ur.urcap.api.contribution.ViewAPIProvider;

4 import com.ur.urcap.api.contribution.program.ContributionConfiguration;
5 import com.ur.urcap.api.contribution.program.CreationContext;

6 import com.ur.urcap.api.contribution.program.ProgramAPIProvider;

7 import com.ur.urcap.api.contribution.program.swing.SwingProgramNodeService;
8 import com.ur.urcap.api.domain.SystemAPI;

9 import com.ur.urcap.api.domain.data.DataModel;

10

11 import java.util.Locale;

12

13 public class HelloWorldProgramNodeService implements SwingProgramNodeService<
HelloWorldProgramNodeContribution, HelloWorldProgramNodeView> {

14

15 @0verride

16 public String getId() {

17 return "HelloWorldSwingNode";

18 }

19

20 @0verride

21 public void configureContribution(ContributionConfiguration configuration) {

22 configuration.setChildrenAllowed (true);

23 }

24

25 @0verride

26 public String getTitle(Locale locale) {

27 String title = "HellogWorld";

28 if ("ru".equals(locale.getLanguage())) {

29 title = " U "y

30 } else if ("de".equals(locale.getLanguage())) {

31 title = "Hallo_ Welt";

32 }

33 return title;

34 }

35

36 @Override

37 public HelloWorldProgramNodeView createView(ViewAPIProvider apiProvider) {

38 SystemAPI systemAPI = apiProvider.getSystemAPI();

39 Style style = systemAPI.getSoftwareVersion().getMajorVersion() >= 5 ? new
V5Style () : new V3Style();

40 return new HelloWorldProgramNodeView(style);

41 }

42

43 @Override

44 public HelloWorldProgramNodeContribution createNode (

45 ProgramAPIProvider apiProvider,

46 HelloWorldProgramNodeView view,

47 DataModel model,

48 CreationContext context) {

49 return new HelloWorldProgramNodeContribution(apiProvider, view, model);

50 ¥

51 }

8.4 Functionality of the Program Node

The functionality of the Hello World program node is implemented in the Java class shown
in Listing 7. This class implements the ProgramNodeContribution interface and instances of this
class are returned.by the HlethO(lcreateNode(ProgramAPIProvider, SwingProgramNodeView, DataModel,
CreationContext) Of the HelloWorldProgramNodeService class described in the previous section.

URCap Development Tutorial 28 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

8 Contribution of a Program Node UNIVERSAL ROBOTS

Listing 7: Java class defining functionality for the Hello World program node

© 00U W

== e
AW N = O

15
16
17
18
19
20
21
22
23
24

56

57
58
59
60

package com.ur.urcap.examples.helloworldswing.impl;

import com.ur.urcap.api.contribution.ProgramNodeContribution;

import com.ur.urcap.api.contribution.program.ProgramAPIProvider;

import com.ur.urcap.api.domain.ProgramAPI;

import com.ur.urcap.api.domain.data.DataModel;

import com.ur.urcap.api.domain.script.ScriptWriter;

import com.ur.urcap.api.domain.undoredo.UndoRedoManager;

import com.ur.urcap.api.domain.undoredo.UndoableChanges;

import com.ur.urcap.api.domain.userinteraction.keyboard.KeyboardInputCallback;
import com.ur.urcap.api.domain.userinteraction.keyboard.KeyboardInputFactory;
import com.ur.urcap.api.domain.userinteraction.keyboard.KeyboardTextInput;

public class HelloWorldProgramNodeContribution implements
ProgramNodeContribution {
private static final String NAME = "name";

private final ProgramAPI programAPI;
private final UndoRedolManager undoRedoManager;
private final KeyboardInputFactory keyboardFactory;

private final HelloWorldProgramNodeView view;
private final DatalModel model;

public HelloWorldProgramNodeContribution(ProgramAPIProvider apiProvider,
HelloWorldProgramNodeView view, DataModel model) {
this.programAPI = apiProvider.getProgramAPI();
this.undoRedoManager = apiProvider.getProgramAPI ().getUndoRedoManager ();
this.keyboardFactory = apiProvider.getUserInterfaceAPI().
getUserInteraction() .getKeyboardInputFactory () ;

this.view = view;
this.model = model;

}

@0verride

public void openView () {
view.setPopupText (getName ());
updatePopupMessageAndPreview () ;

}

@0verride
public void closeView () {
}

@0verride
public String getTitle() {

return "HelloyWorld:, " + (model.isSet(NAME) ? getName() : "");
}

@0verride
public boolean isDefined () {

return getInstallation().isDefined() && !getName ().isEmpty();
}

@Q0verride
public void generateScript(ScriptWriter writer) {
// Directly generate this Program Node’s popup message + access the popup
title through a global variable
writer.appendLine ("popup (\"" + generatePopupMessage() + "\",,
hello_world_swing_popup_title, False,_ False, blocking=True)");
writer.writeChildren () ;

}

public KeyboardTextInput getKeyboardForTextField () {

URCap Development Tutorial 29 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

8 Contribution of a Program Node UNIVERSAL ROBOTS

61 KeyboardTextInput keyboardInput = keyboardFactory.
createStringKeyboardInput () ;

62 keyboardInput.setInitialValue (getName ());

63 return keyboardInput;

64 }

65

66 public KeyboardInputCallback<String> getCallbackForTextField () {

67 return new KeyboardInputCallback<String>() {

68 @0verride

69 public void onOk(String value) {

70 setPopupTitle (value);

71 view.setPopupText (value);

72 }

73 };

74 }

75

76 public void setPopupTitle(final String value) {

e undoRedoManager .recordChanges (new UndoableChanges () {

78 @0verride

79 public void executeChanges () {

80 if ("".equals(value)) {

81 model .remove (NAME) ;

82 } else {

83 model.set (NAME, value);

84 ¥

85 }

86 B

87

88 updatePopupMessageAndPreview () ;

89 }

90

91 private String generatePopupMessage () {

92 return model.isSet(NAME) ? "Hello," + getName() + ", welcome,to, PolyScope!
" : "Noyname set";

93 }

94

95 private void updatePopupMessageAndPreview () {

96 view.setMessagePreview (generatePopupMessage ());

97 view.setTitlePreview(getInstallation().isDefined() ? getInstallation().
getPopupTitle() : "Noytitle,set");

98 ¥

99

100 private String getName () {

101 return model.get (NAME, "");

102 }

103

104 private HelloWorldInstallationNodeContribution getInstallation() {

105 return programAPI.getInstallationNode(
HelloWorldInstallationNodeContribution.class);

106 }

107

108 %}

The openview() and closeview() methods specify what happens when the user selects and unse-
lects the underlying program node in the program tree.

The getTitle() method defines the text which is displayed in the program tree for the node. The
text of the node in the program tree is updated when values are written to the DataModel.

The isDefined() method serves to identify whether the node is completely defined (green) or
still undefined (yellow). Note that a node, which can contain other program nodes (see sec-
tion 8.3. Making the customized Program Nodes available to PolyScope), remains undefined as
long as it has a child that is undefined. The isDefined() method is called when values are writ-

URCap Development Tutorial 30 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

8 Contribution of a Program Node UNIVERSAL ROBOTS

ten to the DataModel to ensure that the program tree reflects the proper state of the program node.

Finally, generateScript(Scriptwriter) is called to add script code to the spot where the underlying
node occurs in the robot program.

As the user interacts with the text input field, the constructed message is displayed on the
screen using the view instance. Each Hello World node is defined (green) if both the Hello
World installation node is defined and the name in the program node is non-empty. When exe-
cuted, it shows a simple popup dialog with the title defined in the installation and the message
constructed from the name.

The popup title is the value of the script variable hello_world_swing_popup_title. This variable is
initialized by the script code contributed by the Hello World installation node. Thus, the script
variable serves to pass data from the contributed installation node to the contributed program
node. Another approach to pass information between these two objects is by directly requesting
the installation object through the Programap1 interface. The Hello World program node utilizes
this approach in its updatePopupMessageAndPreview() method.

8.5 Updating the data model

8.5.1 Restrictions

It is not allowed to modify the supplied data model in the implementation of any overridden
method defined in the program node contribution interface (described in section 8.4. Function-
ality of the Program Node), which PolyScope calls. The data model should rather be updated
due to a user-initiated event, e.g. a button click.

Furthermore, if the URCap contains an installation node contribution, the data model of the
installation contribution not be modified from the program node contribution. If such modifi-
cations occur in the call to openview() while a program is running, PolyScope will automatically
stop the program every time the URCap program node is encountered in the program tree,
because the installation was changed. It is, however, allowed to read from the data model in
the installation node contribution.

8.5.2 Undo/redo Functionality

All user-initiated data model or program tree changes must happen inside the scope of an
UndoableChanges Object using the UndoRedoManager interface to record the changes. Multiple changes
to the model or program tree can happen inside a single UndoableChanges object and this means
that all said changes will be undoable as a single action by the end user. Below in Listing 8 is
a small code snippet demonstrating this.

Listing 8: Code snippet for undo/redo

UndoRedoManager manager = apiProvider.getProgramAPI().getUndoRedoManager ();
manager .recordChanges (new UndoableChanges () {
@Override
public void executeChanges () {
model.set (NAME, "my_,name");
insertChildNodes () ;
}
b5

0O Utk WN =

Only if the end user initiated the action (e.g. clicked a button) should the changes be recorded
as an undoable action. Otherwise the end user will be able to undo something he did not do

URCap Development Tutorial 31 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

8 Contribution of a Program Node UNIVERSAL ROBOTS

and be confused as to what he is undoing.
Failing to record changes inside an UndoableChanges will throw a IllegalStateExeption exception.

As mentioned in section 8.3. Making the customized Program Nodes available to PolyScope,
remember to only store data related to the current configuration of the particular program node
instance in the model, i.e. no global or shared state, state irrevelant to this node instance, etc.
should be stored there.

Undoable actions only apply to a program nodes. Changes to a data model in an installation
node do not have undo/redo support and will not throw a I1legalStateException exception.

When a user clicks undo, the previous values are restored in the data model as well as the
program tree and a call to the openview() method if the program node is currently selected, for
an opportunity to display the new values.

This also means that no values should be cached in member variables, but always retrieved from
the data model, as there is no guarantee that things have not changed. Also keep in mind, that
the user might not select the Command tab of the URCap, so there is no guaranteed call to
openview(). This can be the case when loading a program that has already been setup.

8.6 Loading Programs with Program Node Contributions

Program node contributions contain a data model and an interface to manipulate the sub-tree
(introduced in URCap API version 1.1.0).

When a contributable program node is created in PolyScope by the user, the data model ob-
ject given to the createNode (ProgramAPIProvider, SwingProgramNodeView, DataModel, CreationContext)
method is empty and the provided CreationContext object will also reflect this.

When a program is loaded, the method createlode(. . .) is called for each persisted program node
contribution to re-create the program tree. In contrast to newly creating the program node, the
data model now contains the data from the persisted node and the creationContext object will
reflect this situation also. All modifications to the data model from the program node construc-
tor are ignored. This means that ideally the program node constructor should not set anything
in the data model.

For creating sub-trees a program model can be used. In some of the URCap examples in
Chapter 10. URCap Examples Overview it is demonstrated how a sub-tree can be generated
programmatically. The program model provides the interface TreeNode to create and manipu-
late the sub-tree. When a contributable program node is created in PolyScope by the user, the
tree node has no children. The program model can be requested through the ProgramapI interface.

When a program is loaded each program node is deserialized on its own, this includes sub-trees
previously created through the program model. Also now, the tree node requested through
the ProgramModel is empty. The program node factory returned by getProgramNodeFactory() in
the ProgramModel interface will return program nodes without any functionality. In particu-
lar, the method createURCapProgramNode (Class<? extends URCapProgramNodeService>) does not call the
createlode(...) method in the specified service. Therefore, modifications are ignored during the
createNode(...) call.

URCap Development Tutorial 32 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

8 Contribution of a Program Node UNIVERSAL ROBOTS

8.7 Life Cycle of Contributions and Views

Each time a new program is created or a different program is loaded, the createview(...) method
in the SwingProgramNodeService interface (see section 8.3. Making the customized Program Nodes
available to PolyScope) is also called and a new view instance should be returned. The method
createlNode(...) in the SwingProgramNodeService interface is also called to pass in the new DataModel
object.

This means that Java garbage collection has a chance to clean up previous instances in case
any listeners have been forgotten or other potential memory leaks have been created. This also
means that no references to the view instance or contribution instance should be kept outside
these classes. Respecting this will protect PolyScope from running out of memory.

URCap Development Tutorial 33 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

9 Contribution of a Daemon UNIVERSAL ROBOTS

9 Contribution of a Daemon

A daemon can be any executable script or binary file that runs on the control box. The My
Daemon Swing URCap serves as the running example for explaining this functionality and is an
extension of the Hello World Swing example. The My Daemon Swing example offers the same
functionality from the user’s point of view as the Hello World Swing example.

However, the My Daemon Swing URCap performs its tasks through an executable, which acts
as a sort of driver or server. The executable is implemented as Python 2.5 script and C++
binary. The executables communicate with the Java front-end and URScript executor through
XML encoded Remote Procedure Calls (XML-RPC). Figure 3, page 14, shows the structure of
the My Daemon Swing URCap project.

9.1 Daemon Service

A URCap can contribute any number of daemon executables through implementation of the
DaemonService interface (see Listing 9):

e The init(DaemonContribution) method will be called by PolyScope with a DaemonContribution
object which gives the URCap developer the control to install, start, stop, and query the
state of the daemon. An example of how to integrate start, stop, and query a daemon will
be discussed in Section 9.2. Interaction with the Daemon.

e The installResource(URL url) method in the DaemonContribution interface takes an argument
that points to the source inside the URCap Jar file (.urcap file). This path may point to a
single executable daemon or a directory that contains a daemon and additional files (e.g.
dynamic linked libraries or configuration files).

e The implementation of getExecutable() provides PolyScope with the path to the executable
that will be started.

The /etc/service directory contains links to the URCap daemon executables currently running.
If a daemon executable has a link present but is in fact not running, the ErrOR state will be
returned upon querying the daemon’s state. The links to daemon executables follow the lifetime
of the encapsulating URCap and will be removed when the URCap is removed. The initial state
for a daemon is stopPED, however if it is desired, auto-start can be achieved by calling start() in
the init(DaemonContribution) method right after the daemon has had its resources installed.

Listing 9: The My Daemon Service
package com.ur.urcap.examples.mydaemonswing.impl;

import com.ur.urcap.api.contribution.DaemonContribution;
import com.ur.urcap.api.contribution.DaemonService;

import java.net.MalformedURLException;
import java.net.URL;

© 00 O U WN -~

10 public class MyDaemonDaemonService implements DaemonService {

12 private DaemonContribution daemonContribution;

13

14 public MyDaemonDaemonService () {

15 }

16

17 @0verride

18 public void init(DaemonContribution daemonContribution) {
19 this.daemonContribution = daemonContribution;

URCap Development Tutorial 34 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

9 Contribution of a Daemon UNIVERSAL ROBOTS

20 try {

21 daemonContribution.installResource (new URL("file:com/ur/urcap/examples/
mydaemonswing/impl/daemon/"));

22 } catch (MalformedURLException e) { }

23 }

24

25 @0verride

26 public URL getExecutable () {

27 try {

28 // Two equivalent example daemons are available:

29 return new URL("file:com/ur/urcap/examples/mydaemonswing/impl/daemon/
hello-world.py"); // Python executable

30 // return new URL("file:com/ur/urcap/examples/mydaemonswing/impl/daemon/

HelloWorld"); // C++ executable

31 } catch (MalformedURLException e) {

32 return null;

33 }

34 ¥

35

36 public DaemonContribution getDaemon() {

37 return daemonContribution;

38 }

39

40 ¥

Log information with respect to the process handling of the daemon executable are saved
together with the daemon executable (follow the symbolic link of the daemon executable in
/etc/service to locate the log directory).

Note, that script daemons must include an interpreter directive at the first line to help select
the right program for interpreting the script. For instance, Bash scripts use "#!/bin/bash" and
Python scripts use "#!/usr/bin/env python".

9.2 Interaction with the Daemon

The My Daemon installation screen is shown in Figure 4 and Figure 5 for a CB3 robot and a
e-Series robot, respectively. The code can be found in Listing 19, page 62, in Appendix B. My
Daemon Program and Installation Node.

D File 13:27:51 CCcccC O

Program | jon [Move |10 | Log

[TCP Configuration

My Daemon

Mounting

1/0 Setup The popup title below is shared between all My Daemon pregram nodes.
The title cannot be empty.

0@ Safety
Popup title: [Hello My Daemon

wariables

MODBUS Start Dacmon | | Stop Daemon |

Features My Daemon runs

[Smooth Transition
\Conveyor Tracking
EtherNet/IP
IPROFINET

My Daemon
Default Program

Load/Save

Figure 4: My Daemon installation screen on a CB3 robot

URCap Development Tutorial 35 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

9 Contribution of a Daemon UNIVERSAL ROBOTS

<unnamed>
default*
Run

> Safety The popup title below is shared between all My Daemon program nodes.
) Features The title cannot be empty.

) Fieldbus Popup title: Hello My Daemon

)URCaps

My Daemon runs

o Normal Speed ————) 100% ‘;?\n'u,ﬂat\c.\r'\.

Figure 5: My Daemon installation screen on a e-Series robot

Two buttons have been added to the installation screen to enable and disable the daemon. In
this example the daemon is enabled by default when a new installation is created, and future
changes to the desired run state will be stored in the data model.

The daemon runs in parallel with PolyScope and can in principle change its state independently.
Therefore, the label below the buttons displays the current run status of the daemon. This label
is updated with a 1 Hz frequency, utilizing the java.util.Timer class. Since the UI update is
initiated from a different thread than the Java AWT thread, the timer task must utilize the
EventQueue.invokeLater functionality. Note, the Timer is added when the My Daemon Installation
screen is opened (see openview()) and removed when the user moves away from the screen (see
closeView()) to conserve computing resources.

Two options are available for Java and URScript to communicate with the daemon:
e TCP/IP sockets can be used to stream data.

e XML encoded Remote Procedure Calls (XML-RPC) can be used for configuration tasks
(e.g. camera calibration) or service execution (e.g. locating the next object).

The advantage of XML-RPC over sockets is that no custom protocol or encoding needs to
be implemented. The URScript XML-RPC implementation supports all URScript data types.
Moreover, a RPC will only return when the function execution has been completed. This is
desirable when the next program step relies on data retrieved from the daemon service. Plain
sockets are on the other hand more efficient for data streaming, since there is no encoding
overhead. Both methods can be complimentary applied and are available for Java < daemon
and URScript +» daemon communication.

Listing 10: URScript XML-RPC example

1 global mydaemon_swing = rpc_factory("xmlrpc", "http://127.0.0.1:40405/RPC2")
2 global mydaemon_message = mydaemon_swing.get_message ("Bob")
3 popup(mydaemon_message, "My, Title", False, False, blocking=True)

Listing 10 shows a small URScript example for making a XML-RPC call to a XML-RPC server.

URCap Development Tutorial 36 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

9 Contribution of a Daemon UNIVERSAL ROBOTS

The hello-world.py example daemon (see Listing 22, page 69) can be used as XML-RPC test
server. Simply start the daemon in the My Daemon and run the URScript in a script node.

The intention of this URScript example is to retrieve a message from the daemon to display
during runtime (similar to the My Daemon program node). The rpc_factory script function
creates a connection to the XML-RPC server in the daemon. The new connection is stored in
the global my_daemon_swing variable and serves as a handle. The next line then requests the XML-
RPC server in the daemon to execute the get_message(...) function with the string argument
"Bob" and return the result. The return value of the RPC call is stored in the mydaemon_message
variable for further processing in the popup(...) script function.

Note, making XML-RPC calls from URScript does not require any additional function stubs or
pre-definitions of the remote function to be executed in URScript. Until the XML-RPC returns
this URScript thread is automatically blocked (i.e. no sync nor wait is needed). The standard
XML-RPC protocol does not allow void return values and XML-RPC extensions enabling this
are not always compatible.

The My Daemon Swing example also includes a Java XML-RPC client example, see the combi-
nation of the MyDaemonProgramNodeContribution and XMLRPCMyDaemonInterface classes (Listing 20, page
65 and listing 21, page 67 respectively). Note, the execution of the XML-RPC calls is not on
the main Java AWT thread, but offloaded to a separate thread.

9.3 C/C++ Daemon Executables

The CB3.0/3.1 and CB5.0 control boxes all run a minimal Debian 32-bit Linux operating system.
To guarantee binary compatibility all C/C++ executables should be compiled with the urtool3
cross-compiler under Linux. The urtool3 cross-compiler is included in the SDK installation.

To test if the urtool3 is properly installed type the following in a terminal:
1 echo $URTOOL_ROOT; i686-unknown-linux-gnu-g++ --version
The correct output is:

/opt/urtool-3.0

i686 -unknown-linux-gnu-g++ (GCC) 4.1.2

Copyright (C) 2006 Free Software Foundation, Inc.

This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

CUs W N~

If the first line is not printed directly after installing the SDK, please reboot your PC for the
environment variables to be updated.

The My Daemon Swing URCap comes with a fully functional C4++ XML-RPC server example
that is equivalent to the hello-world.py Python daemon. Simply switch the comments in the
function getExecutable() in the MyDaemonDaemonService class (Listing 9, page 33), and recompile to
use the C++ daemon implementation. The popup title should now be appended with "(c++)"
instead of "(Python)" during execution of the URCap.

The C++ daemon directory structure is shown in Figure 6, page 37. For managing the software
construction process of the C++ daemon a tool called Scons is used. The SConstruct file among
other things contains the main configuration, the urtool3 cross-compiler, and libxmlrpc-c inte-
gration. The SConscript files are used to define the compilation targets, e.g. the Hello World
binary.

URCap Development Tutorial 37 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

9 Contribution of a Daemon UNIVERSAL ROBOTS

com.ur.urcap.examples.mydaemonswing
...
| daemon
service
AbyssServer.cpp
AbyssServer.hpp
SConscript
XMLRPCMethods. cpp
XMLRPCMethods . hpp
Data.cpp
Data.hpp
HelloWorld.cpp
HelloWorld.cpp
SConscript
SConstruct

Figure 6: Structure of the C+4 daemon of the My Daemon Swing project

For the example URCap, the daemon will be build as part of the URCap build process by maven.
However, the daemon can also be compiled manually by typing the following in a terminal:

1 cd com.ur.urcap.examples.mydaemonswing/daemon
2 scons release=1

This will build a release version of the daemon. Using release=0 will build an executable with
debugging symbols.

The XML-RPC functionality in the C4++ daemon relies on the open-source library libxmlrpc-
¢ (http://xmlrpc-c.sourceforge.net). This library is by default available on the CB3.0/3.1
and CB5.0 control boxes. The service directory contains all relevant XML-RPC code. The
AbyssServer is one of the XML-RPC server implementations supported by libxmlrpc-c. Please
look in the C++ code for more programming hints and links to relevant documentation.

9.4 Tying the different Contributions together

The new My Daemon Swing URCap installation node, program node, and daemon executable
are registered and offered to PolyScope through the code in Listing 11.

Three services are registered:
® MyDaemonInstallationNodeService
® MyDaemonProgramNodeService
® MyDaemonDaemonService

The MyDaemonInstallationNodeService class has visibility to an instance of the MyDaemonDaemonService
class. This instance is passed in the constructor when a new installation node instance of the
type MyDaemonInstallationNodeContribution is created with the createInstallationNode(...) method.
In this way, the daemon executable can be controlled from the installation node.

URCap Development Tutorial 38 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

9 Contribution of a Daemon

UNIVERSAL ROBOTS

Listing 11: Tying different URCap contributions together

14
15

16

17

19
20
21
22
23

package com.ur.urcap.examples.mydaemonswing.impl;

import com.ur.urcap.api.contribution.DaemonService;

import com.ur.urcap.api.contribution.installation.swing.
SwingInstallationNodeService;

import com.ur.urcap.api.contribution.program.swing.SwingProgramNodeService;

import org.osgi.framework.BundleActivator;

import org.osgi.framework.BundleContext;

public class Activator implements BundleActivator {
@0verride
public void start(final BundleContext context) throws Exception {
MyDaemonDaemonService daemonService = new MyDaemonDaemonService();
MyDaemonInstallationNodeService installationNodeService = new
MyDaemonInstallationNodeService (daemonService) ;

context.registerService(SwingInstallationNodeService.class,
installationNodeService, null);

context.registerService(SwingProgramNodeService.class, new
MyDaemonProgramNodeService (), null);

context.registerService (DaemonService.class, daemonService, null);

}

@Override
public void stop(BundleContext context) throws Exception {
}

}

URCap Development Tutorial 39 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

10 URCap Examples Overview UNIVERSAL ROBOTS

10 URCap Examples Overview

This section contains a short description of each of the URCap examples included with the
URCaps SDK.

10.1 Regular Samples

Hello World Swing serves as the primary example throughout this tutorial and introduces
all the core concepts of a URCap. This includes contributions to PolyScope of program
nodes and installation nodes that seamlessly hook into:

e The Ul
e Persistence of program and installation files
e Creation and execution of programs

e Program undo/redo functionality

Information:

e Available from:

— URCap API version 1.3.0.
— PolyScope version 3.6.0/5.0.4.
o Main API interfaces: SwingProgramNodeService, ProgramNodeContribution, Swing-
ProgramNodeView, ContributionProvider, SwinglnstallationNodeService, Installa-

tionNodeContribution, SwinglnstallationNodeView, UndoRedoManager, DataModel,
ScriptWriter.

My Daemon Swing is an extension to the Hello World Swing URCap and demonstrates how
a Python 2.5 or C++ daemon can be integrated with the URCap Software Platform. This
is useful when a URCap depends on e.g. a driver or server which is not implemented in
Java. Furthermore, the URCap shows how the XML-RPC protocol can be used to com-
municate with the daemon from an installation node and in the script code generated by
a program node.

Information:

o Awailable from:

— URCap API version 1.3.0.
— PolyScope version 3.6.0/5.0.4.

e Main API interfaces: DaemonContribution, DaemonService.

Script Function Swing demonstrates how to add functions to the list of available script func-
tions in the Expression Editor. Script functions often used by end users of a URCap should
be added to this list.

Information:

o Available from:
— URCap API version 1.3.0.

URCap Development Tutorial 40 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

10 URCap Examples Overview UNIVERSAL ROBOTS

— PolyScope version 3.6.0/5.0.4.
Main API interfaces: Function, FunctionModel

Pick or Place Swing is a toy example that shows how to make changes to the program tree
through the TreeNode API. The program node service (SwingProgramNodeService inter-
face) is configured in such a way that it creates program node contributions that can only
be inserted into the program tree by a URCap and not from the UI of PolyScope by the
end user.

Information:

Available from:
— URCap API version 1.3.0.
— PolyScope version 3.6.0/5.0.4.

Main API interfaces: ProgramModel, TreeNode, ProgramNodeFactory, SwingPro-
gramNodeService, ContributionConfiguration

Ellipse Swing is a toy example, where a pose is used to define the center point for an ellipse-
like movement. The movement is achieved by inserting a pre-configured MoveP program
node containing pre-defined and named Waypoint nodes. This example demonstrates how

to:
e Obtain a pose for the robot position by requesting the end user to define it using the
Move Tab
e Name waypoints
e Request the end user to move the robot to a given target position
e Allow the end user to use the builtin PolyScope support for starting from and paus-
ing/breaking on a selected program node in the program tree. In this case, the end
user can start from or break on a specific Waypoint child node under the Ellipse
(URCap) program node.
Note:

The functionality of assigning the Waypoint nodes custom names is only available
from URCap API version 1.4.0 (released with PolyScope version 3.7.0/5.1.0)

Requesting the user to move the robot to a defined center point is only available from
URCap API version 1.5.0 (released with PolyScope version 3.8.0/5.2.0).

From URCap API version 1.6.0 (released with PolyScope version 3.9.0/5.3.0) the use
of the deprecated move node config factory (MoveNodeConfigFactory interface) has
been replaced with the equivalent builder and the TCP selection of the MoveP node
is pre-configured.

Support for allowing the end user to start from and break on child nodes is only
available from URCap API version 1.9.0 (released with PolyScope version 5.6.0).

From URCap API version 1.11.0 (released with PolyScope 3.14.0/5.9.0) the use of
the deprecated method getUserDefinedRobotPosition(RobotPositionCallback) has been re-
placed with the equivalent getUserDefinedRobotPosition(RobotPositionCallback2) method.
Furthermore, the use of the deprecated factory method for creating fixed position
Waypoint node configurations (createFixedPositionConfig(...) without TCP offset) has
been replaced with the equivalent method taking the TCP offset as parameter as well.

URCap Development Tutorial 41 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

10 URCap Examples Overview UNIVERSAL ROBOTS

Information:

e Available from:
— URCap API version 1.3.0.
— PolyScope version 3.6.0/5.0.4.

o Main API interfaces: Userlnteraction, RobotPositionCallback2, RobotMovement,
RobotMovementCallback, WaypointNodeConfig, MovePMoveNodeConfig, MoveN-

odeConfigBuilders, MoveP ConfigBuilder, PoseFactory, Pose, SimpleValueFactory, Joint-

Positions

Cycle Counter Swing demonstrates how to work with variables. In this example, the chosen
variable will be incremented each time the program node is executed.

This sample also demonstrates how to allow the end user to use the builtin PolyScope sup-
port for starting from and pausing/breaking on a selected program node in the program
tree. In this case, the end user can start from or break on any child node under the Cycle
Counter (URCap) program node.

Note:

e Support for allowing the end user to start from and break on child nodes is only
available from URCap API version 1.9.0 (released with PolyScope version 5.6.0)

Information:

o Available from:

— URCap API version 1.3.0.
— PolyScope version 3.6.0/5.0.4.

e Main API interfaces: Variable, VariableFactory, ExpressionBuilder

Idle Time Swing demonstrates how to work with the ProgramNodeVisitor to traverse all pro-
gram nodes in a sub-tree. In this example, all Wait nodes will be visited. If a Wait node
is configured to wait for an amount of time, that amount of idle time (in seconds) will
accumulate in the selected variable.

Information:

o Available from:

— URCap API version 1.3.0.
— PolyScope version 3.6.0/5.0.4.

e Main API interfaces: ProgramNodeVisitor, WaitNodeConfig

Localization Swing demonstrates how to implement localization in URCaps. PolyScope lo-
calization settings is accessed through the SystemSettings API.
Information:

o Awailable from:
— URCap API version 1.3.0.

URCap Development Tutorial 42 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

10 URCap Examples Overview UNIVERSAL ROBOTS

— PolyScope version 3.6.0/5.0.4.
e Main API interfaces: SystemSettings, Localization, Unit, SimpleValueFactory

User Input demonstrates how to work with the virtual on-screen keyboard/keypad and user
input validation.

Information:

o Available from:

— URCap API version 1.3.0.
— PolyScope version 3.6.0/5.0.4.

o Main API interfaces: KeyboardInput, InputValidationFactory

My Toolbar demonstrates how to implement a PolyScope toolbar contribution.

Information:

o Available from:

— URCap API version 1.3.0.
— PolyScope version 5.0.4.

e Main API interfaces: SwingToolbarService, SwingToolbarContribution.

Node Ordering Swing demonstrates how to define a specific sort order in PolyScope for the
program node contributions from a URCap.

Information:

o Available from:
— URCap API version 1.5.0.
— PolyScope version 3.8.0/5.2.0.

e Main API interfaces: ContributionConfiguration, SwingProgramNodeService.

Tool Changer Swing is a toy example that shows how contribute TCPs to PolyScope as well
as access the list of available TCPs in PolyScope.

In the installation node contribution, the user can define a tool change position, enable/dis-
able different tool TCPs and define a translational offset between the tool flange and all
the enabled tool TCPs.

In the program node contribution, the user can select a TCP for the new tool from the
list of all available TCPs in PolyScope. When the program node is executed, the robot
will move to the user-defined tool change position, change the tool (simulated by a waiting
period) and finally change the active TCP to the selected TCP.

Information:

o Awailable from:
— URCap API version 1.5.0.

URCap Development Tutorial 43 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

10 URCap Examples Overview UNIVERSAL ROBOTS

— PolyScope version 3.8.0/5.2.0.
e Main API interfaces: TCPContributionModel, TCPModel.

Note:

e From URCap API version 1.11.0 (released with PolyScope 3.14.0/5.9.0) the use of
the deprecated method getUserDefinedRobotPosition(RobotPositionCallback) has been re-
placed with the equivalent getUserDefinedRobotPosition(RobotPositionCallback2) method.

Move Until Detection Swing demonstrates how to work with the Distance and Until pro-
gram nodes through the URCap APL

The program node contribution creates a Direction node that moves the robot downwards,
until a sensor is triggered (through an input), or until a maximum distance is reached. If
the sensor is triggered, a connected physical device (e.g. a gripper) is activated by setting
an output high. If the maximum distance is travelled before the sensor is triggered, a
popup is generated to display an error to the user. The user can specify the maximum
distance through a text field in the Move Until Detection node.

Information:

o Available from:
— URCap API version 1.6.0.
— PolyScope version 3.9.0/5.3.0.

e Main API interfaces: DirectionNode, DirectionNodeConfigBuilder, UntilNode, Un-
tilNodeConfigFactory.

Tool I/0 Control Swing demonstrates how to work with the resource model and request
exclusive control of the Tool I/O Interface through the URCap APL. It also demonstrates
how to check, if a specific capability is available on the underlying robot system (in this
case the Tool Communication Interface (TCI) and Tool Output Mode features).

For further details about resource control, please see the separate Resource Control doc-
ument. The concept of system capabilities and checking their availability is described in
the separate Capabilities document.

Information:

o Available from:
— URCap API version 1.7.0.
— PolyScope version 3.10.0/5.4.0.

e Main API interfaces: ResourceModel, ControllableResourceModel, ToollOInterface-
Controller, ToollOInterface, ToollOInterfaceControllable, CapabilityManager.

Grip and Release Swing demonstrates how to use gripper devices in a template program
node.

In the program node contribution, the user can select a gripper among the registered
grippers available in PolyScope. When a gripper has been selected, the selected gripper
can be applied to the template node. This will insert two Gripper program nodes for

URCap Development Tutorial 44 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

10 URCap Examples Overview UNIVERSAL ROBOTS

the selected gripper: one node configured for a grip action and one node configured for a
release action.

This example demonstrates how to:

o Get the list of grippers available in PolyScope
e Insert a Gripper program node for a specific gripper device in the program tree

e Configure a Gripper program node for grip and release actions

Note: To have grippers to select from in the program node, some of the gripper driver
URCap samples (e.g. Simple Gripper) can be installed.

For further details about how to use devices in template nodes, please see the separate
Using a Device in a Template document.

Information:

o Available from:

— URCap API version 1.9.0.
— PolyScope version 3.12.0/5.6.0.

o Main API interfaces: GripperManager, GripperProgramNodeFactory, GripperNode,
GripConfigBuilder, ReleaseConfigBuilder, GripperDevice.

Create Feature Swing is an example that shows how to contribute a feature to PolyScope as
well as how to modify and remove it.

In the installation contribution, the user can define a feature and subsequently update and
remove it. The created feature is stored in the data model of the installation contribution.

In the program node contribution, the user will be asked to create a feature from the instal-
lation contribution, if not done already. When the feature is created, the user can press a
button to create a movement relative to the created feature. The movement is achieved by
inserting a pre-configured Movel. program node containing pre-defined Waypoint nodes.
When the program node is executed, the robot will perform a square movement centered
at the created feature.

Information:

o Awailable from:

— URCap API version 1.9.0.
— PolyScope version 3.12.0/5.6.0.

e Main API interfaces: FeatureContributionModel.

Note:

e From URCap API version 1.11.0 (released with PolyScope 3.14.0/5.9.0) the use of
the deprecated method getUserDefinedRobotPosition(RobotPositionCallback) has been re-
placed with the equivalent getUserDefinedRobotPosition(RobotPositionCallback2) method.
Furthermore, the use of the deprecated factory method for creating fixed position
Waypoint node configurations (createFixedPositionConfig(...) without TCP offset) has
been replaced with the equivalent method taking the TCP offset as parameter as well.
The tool flange is used as the TCP offset.

URCap Development Tutorial 45 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

10 URCap Examples Overview UNIVERSAL ROBOTS

Create Payload Swing is an example that shows how to contribute a payload to PolyScope
as well as how to modify and remove it.

In the installation contribution, the user can create a payload and subsequently update the
mass and center of gravity (CoG) parameters of the created payload as well as remove the
payload. Values entered by the user for the mass and center of gravity (CoG) parameters
are validated using the parameter limits available through the API. The created payload
is stored in the data model of the installation contribution.

In the program node contribution, the user will be asked to create a payload from the
installation contribution, if not done already. When the payload is created, the user can
press a button to create a Set Payload node with the payload (created in the installation
contribution) pre-selected.

Information:

e Available from:

— URCap API version 1.13.0
— PolyScope version 5.11.0

o Main API interfaces: PayloadContributionModel, RobotLimits, SetPayloadNode

10.2 Driver Samples

Custom User Inputs demonstrates how to use different types of user inputs (e.g. combo box
and checkbox inputs) and other (non-user input) UI elements (e.g text components) when
defining a custom UI for a driver contribution.

The URCap also shows how to use the filler UT element for controlling/grouping the layout
and how to add a custom input validator for detecting errors for enterable user inputs, in
this case an IP address user input (text field).

Information:

o Awailable from:

— URCap API version 1.7.0.
— PolyScope version 3.11.0/5.5.0.

e Main API interfaces: CustomUserInputConfiguration.

Simple Gripper demonstrates how to create a gripper driver contribution for a basic gripper
that only supports the mandatory ”default” grip and release actions. The URCap uses
digital outputs in the script code generation to trigger grip and release actions.

For further details about gripper driver contributions, please see the separate Gripper
Driver document.

Information:

o Available from:

— URCap API version 1.8.0.
— PolyScope version 3.11.0/5.5.0.

URCap Development Tutorial 46 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

10 URCap Examples Overview UNIVERSAL ROBOTS

o Main API interfaces: GripperContribution.

Advanced Gripper demonstrates how to create a gripper driver contribution for a more ad-
vanced gripper that supports some of the optional gripper capabilities and controls the
Output Voltage setting of the Tool I/O Interface resource. The URCap shows how to:

e Configure gripper capabilities for, e.g. width, speed, force, vacuum and feedback for
grip and release detection

e Request exclusive control of the Tool I/O Interface resource

e Configure the Output Voltage I/O setting of the Tool I/0O Interface

Additional information:
e For details about gripper driver contributions, please see the separate Gripper Driver
document.

e For information about system resource control, please see the separate Resource Con-
trol document.

e To see an example of how some of the other settings of the Tool I/O Interface can be
configured, see the Tool 1/0O Control Swing URCap example.

Note:

e Feedback capabilities of the gripper is only available from URCap API version 1.9.0
(released with PolyScope version 3.12.0/5.6.0)

Information:

e Available from:

— URCap API version 1.8.0.
— PolyScope version 3.11.0/5.5.0.

e Main API interfaces: GripperContribution, GripperCapabilities, SystemConfigu-
ration, GripActionParameters, ReleaseActionParameters, GripperFeedbackCapabili-
ties.

Custom Gripper Setup demonstrates how to create a gripper driver contribution which de-
fines a custom UT in the installation node for setting up the gripper as well as adds a TCP
for the gripper to PolyScope.

For further details about gripper driver contributions, please see the separate Gripper

Driver document.

Information:

e Available from:
— URCap API version 1.8.0.
— PolyScope version 3.11.0/5.5.0.

e Main API interfaces: GripperContribution, TCPConfiguration, CustomUserInput-
Configuration.

URCap Development Tutorial 47 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

10 URCap Examples Overview UNIVERSAL ROBOTS

Dual Zone Gripper demonstrates how to create a gripper driver contribution for a multi-
gripper that supports multiple permanently enabled, individual grippers as well as dynam-
ically adjusts the parameters of a capability (after it has been registered) for all individual

grippers.

In this example, the gripper is a vacuum dual gripper with two independent physical grip-
pers (zones) "built into” the gripping device. The URCap provides the user the option
to select from three individual zones (grippers), named Zone A, Zone B and Zone A+B.
The user can operate Zone A and Zone B independently of one another or choose to use
both zones at the same by selecting Zone A+B.

A custom UI is defined in the installation node which allows the user to enable the ”Use
Fragile Handling” option. When enabled, this will restrict the maximum vaccum level
available for a grip action. This is achieved by reducing the maximum value and default
value parameters of the registered vacuum capability simultaneously for all zones.

The URCap shows how to:

e Configure the multi-gripper capability to support multiple permanently enabled, in-
dividual grippers

e Add a dedicated TCP for each individual gripper (zone)

e Dynamically update the parameter values of a registered (parameter-based) capabil-
ity for all individual grippers (zones). In this case, the registered capability is the
grip vaccum capability.

For further details about gripper driver contributions, please see the separate Gripper
Driver document.

Information:

e Available from:

— URCap API version 1.11.0.
— PolyScope version 3.14.0/5.9.0.

o Main API interfaces: GripperContribution, GripperCapabilities, GripperListProvider,
GripperListBuilder, SelectableGripper, SystemConfiguration, TCPConfiguration, Grip-
VacuumCapability

Dynamic Multi-Gripper demonstrates how to create a gripper driver contribution that sup-
ports both a single gripper setup and multi-gripper setup as well as dynamically adjusts
the parameters of a capability (after it has been registered) exclusively for each individual

gripper.

In this example, the gripper driver provides the user the option of choosing between us-
ing a setup with only a single gripper mounted on the robot, or one where two separate,
identical grippers are mounted on the robot at the same time. Each individual gripper
supports moving to a user configurable position (open/close to a configurable width).

A custom U is defined in the installation node which allows the user to select how many
gripper are mounted on the robot. The available options are Single and Dual. Selecting
the Single option will disable the secondary gripper, Gripper 2, and only the standard

URCap Development Tutorial 48 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

10 URCap Examples Overview UNIVERSAL ROBOTS

gripper, Gripper 1, will be available to the user. Choosing the Dual option will enable
both grippers making both of them available to the user. Depending on the option se-
lected, the offset of TCP for the standard gripper (Gripper 1) is updated accordingly.

For each individual gripper (Gripper 1 and Gripper 2), the user can configure the type of
fingertips attached to the gripper (in the installation node). There are two options, Stan-
dard and Eztended. The Standard option is the default whereas the FExtended option can
be selected, when fingertips with wide range is attached. Selecting the Eztended option
will increase the maximum value and default value parameters of the registered width ca-
pability exclusively for the specific individual gripper (independently of the other gripper).

The URCap shows how to:

e Configure the multi-gripper capability to support multiple individual grippers where
some of the grippers are initially disabled

e Dynamically enable and disable individual grippers
e Add a dedicated TCP for each individual gripper

e Dynamically update the parameter values of a registered (parameter-based) capabil-
ity exclusively for an individual gripper (independently of the other grippers). In this
case, the registered capability is the width capability.

For further details about gripper driver contributions, please see the separate Gripper
Driver document.

Information:

o Available from:

— URCap API version 1.11.0.
— PolyScope version 3.14.0/5.9.0.
o Main API interfaces: GripperContribution, GripperCapabilities, GripperListProvider,

GripperListBuilder, SelectableGripper, MultiGripperCapability, SystemConfiguration,
TCPConfiguration, WidthCapability

Simple Screwdriver demonstrates how to create a screwdriver driver contribution for a basic
screwdriver that only supports the mandatory start and stop screwdriver operations. The
URCap uses digital outputs in the script code generation to start and stop the screwdriver.

For further details about screwdriver driver contributions, please see the separate Screw-
driver Driver document.

Information:

o Available from:

— URCap API version 1.9.0.
— PolyScope version 5.6.0.

Advanced Screwdriver demonstrates how to create a screwdriver driver contribution that
supports some of the optional operation and operation feedback capabilities, e.g. Program
Selection, Feed Screw, Drive Screw OK and Screwdrive Ready. The URCap primarily uses

URCap Development Tutorial 49 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

10 URCap Examples Overview UNIVERSAL ROBOTS

I/Os for the implementation of the capabilities.

For further details about screwdriver driver contributions, please see the separate Screw-
driver Driver document.

Information:

e Available from:

— URCap API version 1.9.0.
— PolyScope version 5.6.0.

Custom Screwdriver demonstrates how to create a screwdriver contribution driver which de-
fines a custom Ul in the Screwdriving installation node for setting up the screwdriver as
well as adds a default TCP for the screwdriver to PolyScope.

For further details about screwdriver driver contributions, please see the separate Screw-
driver Driver document.

Information:

o Available from:

— URCap API version 1.9.0.
— PolyScope version 5.6.0.

URCap Development Tutorial 50 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

11 Creating new thin Projects using a Maven Archetype UNIVERSAL ROBOTS

11 Creating new thin Projects using a Maven Archetype

There are different ways to get started with URCap development. One is to start with an
existing URCap project and modify that. When you have got a hang of it you may want to
start with an empty skeleton with the basic Maven structure. So enter the directory of the
URCaps SDK and type:

1 $./newURCap.sh

This prompts you with a dialog box where you select a group and artifact-id for your new
URCap:

URCap Project Creator

Project Configuration
Create a new project

GroupId: [com. yourcompany
ArtifactID: QNG

<Cancel>

An example could be com.yourcompany as group-id and thenewapp as artifact-id. Consult best prac-
tices naming conventions for Java group-ids.

Next you must specify which Universal Robots robot series your URCap is compatible with:

URCap Project Creator

Project Configuration
URCap Compatibility:

| Wlonly compatible with (B3
() 2 Only compatible with e-Series
() 3 Compatible with CB3 and e-Series

<Cancel>

Maybe your URCap requires specific hardware and/or software features, which are only available
on a specific robot series (e.g., e-Series robots only), or the URCap might be compatible with
all robot series. Such considerations should determine your choice here. See section 12.1. Robot
Series Compatibility for more details about robot series compatibility.

URCap Development Tutorial 51 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

11 Creating new thin Projects using a Maven Archetype UNIVERSAL ROBOTS

Finally, you must also specify the target URCap API version. Choosing an earlier version
of the API will make your URCap compatible with earlier PolyScope versions, but also limit
the functionality accessible through the API. URCap API compatibility is described in section
12.2. API Compatibility.

APT version:

1.12.0 (PolyScope SW 5.108.8 or newer/3.15.8 required)

.11.8 (PolyScope SW 3.14.6/5.9.0 or newer required)

0.0 (PolyScope SW 3.13.8/5.8.8 or newer required)
.8 (PolyScope SW 3.12.8/5.6.0 or newer required)
.0 (PolyScope SW 3.11.8/5.5.8 or newer required)
.® (PolyScope SW 3.10.8/5.4.0 or newer required)
.@ (Polyscope SW 3.9.6/5.3.0 or newer required)
.0 (PolyScope SW 3.8.6/5.2.0 or newer required)
.® (PolyScope SW 3.7.6/5.1.0 or newer required)
.0 (PolyScope SW 3.6.8/5.0.0 or newer required)
.56 (PolyScope SW 3.5.0/5.0.8 or newer required)
.0 (PolyScope SW 3.4.6/5.0.0 or newer required)
.@ (PolyScope SW 3.3.6/5.0.0 or newer required)

1
-9
.8
7
-6
.5
4
=3
.2
-1
.0

<Cancel>

Pressing the Ok button in the last dialog creates a new Maven project under the sub-folder
./com.yourcompany . thenewapp. This project can easily be imported into an IDE for Java, e.g.
Eclipse, Netbeans, or IntelliJ.

Notice that the generated pom.xml file has a section with a set of properties for the new URCap
with meta-data for vendor, contact address, copyright, description, and short license informa-
tion which will be displayed to the user when the URCap is installed in PolyScope. This section
also contains boolean compatibility flag properties specifying the URCap’s compatibility with
the different available robot series. Update the URCap meta-data section with the data relevant
for the new URCap. See Listing 1 for an example of how this section might look.

Should you need to change the version of the URCap API to depend upon after your project
has been setup, this can be done in the pom.xml file in your project. Here you must update
to the desired version in the URCap API dependency under the <dependencies> section of the
pom. xm1-file as well as modify the <import-package> element under the maven-bundle-plugin if version
information is present. See listings 12, 13 and 16 for examples of this

Listing 12: Modify URCap API runtime dependency in pom.xml

<Import-Package>
com.ur.urcap.apix,
*

</Import-Package>

D TU R W N

URCap Development Tutorial 52 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

11 Creating new thin Projects using a Maven Archetype

UNIVERSAL ROBOTS

Listing 13: Specifying URCap API compile time dependency in pom.xml

1 -

2 <dependencies>

3 A

4 <dependency >

5 <groupld>com.ur.urcap</groupId>
6 <artifactId>api</artifactId>
7 <version>1.0.0.30</version>
8 <scope>provided</scope>

9 </dependency>

10 A

11 </dependencies >

12

URCap Development Tutorial 53

Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

12 Compatibility UNIVERSAL ROBOTS

12 Compatibility

12.1 Robot Series Compatibility

When developing URCaps you must mandatorily specify which robot series your URCap is com-
patible with, i.e. which robot series your URCap can run on. The purpose is to provide a good
user experience for the URCap installation process by ensuring that end users cannot install
a URCap that is not compatible with their robot and/or Universal Robots offline simulator
software (URSim).

When specifying your URCap’s compatibility, you need to consider, if your URCap depends on
specific hardware and/or software functionality, which is not available on all robot series (e.g.,
only available on e-Series robots), or if the URCap can run on all available robot series. Note
that your URCap’s compatibility must be specified for all robot series available in the line of
robots from Universal Robots (including robot series which your URCap is incompatible with).

12.1.1 Compatibility Flags

The URCap’s compatibility is specified using boolean compatibility flags which are defined as
properties in the pom.xml1 Maven configuration file in your URCap project. Two compatibility
flag properties, urcap.compatibility.CB3 and urcap.compatibility.eSeries, must be present in the
URCap meta-data section in the pom.xml file. An example of the meta-data section with the
two compatibility flag properties is shown in Listing 14.

Listing 14: Compatibility flags in the pom.xml file’s URCap meta-data properties section

T Q1= = koo ko sk ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok sk ok ok ok sk ok sk ok ok sk sk ok ok sk sk ok ok ok sk ok ok sk ok s ok ok sk sk ok ok sk ok ok ok sk sk ok dkok ok ok Kok sk ok ok — — >

2 <I-- Note: Update this section with relevant meta data -=>

3 <!-- that comes along with your URCap -=>

41— —skokoskok ok ok sk sk sk ok ok sk sk ok ok sk sk ok ok sk sk sk ok sk sk sk ok ok sk sk sk ok sk sk sk ok sk sk sk ok ok sk sk ok ok sk sk sk ok sk ok sk ok ok sk sk ok ok sk ok ok ok sk ok ok ok ok ok — — >

5 <D= —skkkokkkokkkokkkkkkkkkkx BEGINNING OF URCAP META DATA kkskokkokokkokokkkokkkkkkk — —>

6 <urcap.symbolicname>com.ur.urcap.examples.helloworldswing</urcap.symbolicname>

7 <urcap.vendor>Universal Robots</urcap.vendor>

8 <urcap.contactAddress>Energivej 25, 5260 Odense S, Denmark</urcap.
contactAddress>

9 <urcap.copyright>Copyright (C) 2009-2021 Universal Robots. All Rights Reserved

</urcap.copyright>
10 <urcap.description>Hello World Swing sample URCap</urcap.description>
11 <urcap.licenseType>Sample license</urcap.licenseType>
12 <urcap.compatibility.CB3>true</urcap.compatibility.CB3>
13 <urcap.compatibility.eSeries>true</urcap.compatibility.eSeries>
14 <V = —sokskokokskokokokokkokokkokkokkokkkk END OF URCAP META DATA skskokokskok sk okok sk ok ok sk ok kokok okokok skok — — >

These two properties specify the URCap’s compatibility with the CB3 and the e-Series robot
series, respectively. Acceptable values for the properties are either true or false. A value of true
indicates that the URCap can be installed and run on the given robot series, and a value of
false indicates otherwise. Note that both flags must present including the flag for a robot series
which your URCap is not compatible with.

Using the newURCap. sh script mentioned in section 11. Creating new thin Projects using a Maven
Archetype, the compatibility flags are handled automatically for you. On the other hand, if an
existing URCap needs to be updated to support the compatibility flags, you must manually
update your URCap project’s pom.xml file. This will only be necessary, if you used a version of
the URCap SDK lower than 1.12.0 to create the URCap by either using the newURCap.sh script,
or by basing the URCap on a modification of one of the URCap example projects included in
the SDK. The required changes are described in subsection 12.1.3. Updating Existing URCaps.

URCap Development Tutorial 54 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

12 Compatibility UNIVERSAL ROBOTS

If the compatibility of your URCap changes, remember to update the value of the URCap’s
compatibility flags accordingly.

12.1.2 Installation and Startup of URCaps

When the end user attempts to install a new URCap through the URCap Setup/Settings screen
in PolyScope, PolyScope will inspect the URCap’s compatibilty flags. Depending on the boolean
value of the URCap’s compatibility flags and the type of series of the end user’s robot (or offline
simulator), the user will either be allowed to install or prevented from installing that URCap.
If the URCap is incompatible, the end user will be informed of this through a dialog.

Similarly, a URCap’s compatibility flags are examined during startup of PolyScope, if the UR-
Cap was deployed and installed using Maven (described in section 6. Deployment with Maven)
instead of being installed through the PolyScope UL If the URCap is incompatible, it will not
be allowed to start and an error dialog will be displayed in PolyScope.

The presence of the compatibility flags in a URCap will be verified during startup of PolyScope
(if the URCap was deployed and installed using Maven), and a URCap will not be started, if
any of the flags are missing. Likewise, a URCap with missing compatibility flag(s) will not be
installable through PolyScope. An error dialog will be displayed in PolyScope in these cases.

Note that only URCaps depending on URCap API version 1.12.0 or higher will be prevented
from starting or being installed, if the compatibility flags are not present.

12.1.3 Updating Existing URCaps

If you have an existing URCap that needs to be updated to support the compatibility flags,
changes must be applied to your URCap project’s pom.xml file.

First of all, you must add the two compatibility flag properties, urcap.compatibility.CB3 and
urcap.compatibility.eSeries, to the URCap meta-data section as shown in Listing 14 in section
12.1.1. Compatibility Flags. Remember to specify boolean values corresponding to your UR-
Cap’s compatibility.

Listing 15: Excerpt of the pom.xml file’s Maven bundle plugin configuration with compatiblity
flag support

1 .

2 <build>

3 <plugins>

4 .

5 <plugin>

6 <groupld>org.apache.felix</groupIld>

7 <artifactId>maven-bundle-plugin</artifactId>

8 .

9 <configuration>

10 <instructions>

11 <! --xxxxxxxx DO NOT MODIFY THE ENTRIES OF THIS SECTION **¥**k**x-->

12 <Bundle-Category>URCap</Bundle-Category>

13 .

14 <URCapCompatibility -CB3>${urcap.compatibility.CB3}</
URCapCompatibility -CB3>

15 <URCapCompatibility-eSeries>${urcap.compatibility.eSeries}</
URCapCompatibility-eSeries>

16 1= = sk ook ok ok ok ok ok ok ok K ok oK ok ok ok ok K ok oK ok ok K oK oK ok ok K oK K ok ok o ok K ok ok ok ok K oK oK ok ok K ok K ok ok K K koK Rk Rk — — >

17 .

18 <instructions>

19 <configuration>

20 <plugin>

URCap Development Tutorial 55 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

12 Compatibility UNIVERSAL ROBOTS

21 .
22 <plugins>
23

In order for PolyScope to be able to read the specified values for the compatibility flag proper-
ties, the <build> section with configuration of build plugins also needs to be updated. Here the
configuration for the Maven bundle plugin must be updated to contain two new instructions,
<URCapCompatibility-CB3> and <URCapCompatibility-eSeries>, as shown in the excerpt in Listing 15.

For convenience, instead of manually making the changes described above, you can use the
upgradeURCap.sh script to update your pom.xml file.

Below are examples of usage of the script, where /home/myuser/myURCap is the path to the folder
with a URCap project and /home/myuser/sdk is the path to the folder of the URCap SDK.

Go to the folder of the URCap SDK and type:

1 $./upgradeURCap.sh /home/myuser/myURCap

This will apply the required changes to the URCap project’s pom.xml file inside the folder
/home/myuser/myURCap. Both compatibility flag properties are assigned the boolean value of
true by default (i.e. your URCap is compatible with both the CB3 and e-Series robot series).
Remember to change the value of the compatibility flag properties in the pom.xml file accord-
ingly, if the preassigned default values does not match your URCap’s compatibility.

Instead of specifying an absolute path to your URCap project folder, you can also specify a
relative path:

1 $./upgradeURCap.sh ../myURCap

Alternatively, it is also possible to copy the upgradeURCap. sh script to your URCap project folder
and execute the script from within that folder by typing:

1 $ cd myURCap
2 $./upgradeURCap.sh .

Finally, you have the option of directly specifying the boolean value for the compatibility flags
using the compatibilityCB3 and compatibilityESeries arguments:

1 $./upgradeURCap.sh ../myURCap compatibilityCB3=false compatibilityESeries=
true

In this case, you have specified that your URCap is compatible with the e-Series robot series,
but incompatible with the CB3 robot series.

12.2 API Compatibility

When developing URCaps you must specify a dependency on a version of the URCap API
to compile against. Using the newURCap.sh script mentioned in section 11. Creating new thin
Projects using a Maven Archetype, this is handled automatically for you. How to update the
version of the URCap API dependency for an existing URCap project is described at the end
of section 11. Creating new thin Projects using a Maven Archetype.

A given version of the API is compatible with a specific version of PolyScope (see table 1 below).
PolyScope will remain backwards compatible with earlier versions of the API. This means that
if you choose to use the newest API, customers using your URCap must be running at least the

URCap Development Tutorial 56 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

12 Compatibility UNIVERSAL ROBOTS

version of PolyScope with which the given API was released.

It is not a problem if the customer is running a newer (future) version of PolyScope. However,
it is not possible for the customer to use your URCap if he is running an earlier version of
PolyScope than the one the API was released with. A good rule of thumb is thus to choose the
earliest possible version of the API that supports the functionality you wish to use. This will
target the broadest audience.

For instance, if you specify a dependency on the API version 1.1.0, your URCap will only run on
PolyScope version 3.4.0 or newer. If you wish to target the broadest possible audience, you must
use version 1.0.0 of the API and the customers must be running PolyScope version 3.3.0 or newer.

Note that API version 1.12.0 is the final API version supported on CB3 robots. Higher API
versions are only available on e-Series robots.

URCap API version | Min. PolyScope version
1.13.0 5.11.0

1.12.0 3.15.0/5.10.0
1.11.0 3.14.0/5.9.0
1.10.0 3.13.0/5.8.0
1.9.0 3.12.0/5.6.0
1.8.0 3.11.0/5.5.0
1.7.0 3.10.0/5.4.0
1.6.0 3.9.0/5.3.0
1.5.0 3.8.0/5.2.0
1.4.0 3.7.0/5.1.0
1.3.0 3.6.0/5.0.4
1.2.56 3.5.0

1.1.0 3.4.0

1.0.0 3.3.0

Table 1: API versions and PolyScope version requirements

12.2.1 Advanced compatibility

Contrary to what is described above, it is possible to load a URCap depending on a newer
API than what is officially supported by PolyScope. By configuring your URCap to resolve its
dependencies runtime rather than install time, PolyScope will start your URCap regardless of
the URCap API version dependency specified. Care must be taken to have a code execution
path that does not use anything not available in the API that the given version of PolyScope
supports (otherwise a NoSuchMethodError Or NoClassDefFoundError will be thrown).

As an example you could have a dependency on API version 1.5.0 and run it on PolyScope
version 3.7.0/5.1.0 (officially only supporting API version 1.4.0), but in the actual execution
path you can only use types present in API version 1.4.0.

To have the URCap resolve at runtime the pom.xml must have the option ;resolution:=optional
appended to the URCap API entry in the <import-package> section. The full <import-package>
section could look like this:

URCap Development Tutorial 57 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

12 Compatibility UNIVERSAL ROBOTS

Listing 16: Excerpt of pom.xml file for advanced compatibility

<Import -Package>
com.ur.urcap.api*;resolution:=optional,
*

</Import-Package>

UL W N

This will make the URCap start up regardless of what the actual dependency states.

As mentioned you must also structure your code so no code referring unsupported API function-
ality is executed. Also no import or catch clauses referring to unsupported types can be present
in classes that will execute. See listings 17 and 18 for an example of how to structure this. In
listing 17 all code related to unsupported API functionality is located and in 18 a check for
PolyScope version number is performed before creating an instance of the AdvancedFeature class.

Listing 17: AdvancedFeature class showing advanced compatiblity

1 import com.ur.urcap.api.contribution.installation.InstallationAPIProvider;

2 import com.ur.urcap.api.domain.InstallationAPI;

3 import com.ur.urcap.api.domain.value.Pose;

4 import com.ur.urcap.api.domain.value.PoseFactory;

5 import com.ur.urcap.api.domain.value.simple.Angle;

6 import com.ur.urcap.api.domain.value.simple.Length;

7

8 public class AdvancedFeature {

9 private final InstallationAPIProvider apiProvider;

10

11 public AdvancedFeature(InstallationAPIProvider apiProvider) {

12 this.apiProvider = apiProvider;

13 }

14

15 public void addTCP () {

16 InstallationAPI installationAPI = apiProvider.getInstallationAPI();

17 PoseFactory poseFactory = installationAPI.getValueFactoryProvider ().
getPoseFactory () ;

18 Pose pose = poseFactory.createPose(0, 0, 100, 0, 0, O, Length.Unit.MM,
Angle .Unit .RAD);

19 apiProvider.getInstallationAPI().getTCPContributionModel () .addTCP ("
GRIPPER_TCP", "Gripper", pose);

20 }

21 %

Listing 18: Usage of AdvancedFeature class

1 SoftwareVersion softwareVersion = apiProvider.getSystemAPI().
getSoftwareVersion () ;

2 if ((softwareVersion.getMajorVersion() == 3 && softwareVersion.
getMinorVersion() >= 8) ||

3 softwareVersion.getMajorVersion() == 5 && softwareVersion.

getMinorVersion() >= 2) {
4 new AdvancedFeature (apiProvider).addTCP();
5 }

If you choose to use this advanced feature, you must test your URCap carefully on all PolyScope
versions you wish to support making sure all code execution paths are tested.

URCap Development Tutorial 58 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

13 Exception Handling UNIVERSAL ROBOTS

13 Exception Handling

All exceptions thrown and not caught in a URCap will be caught by PolyScope. If this happens
when the end user selects either an installation node or a program node from the URCap, the
UI provided by the URCap will be replaced by a screen displaying information about the error.
In all other cases, a dialog will be shown to the end user.

The error screen and dialog will show that an exception has happened in the URCap along with
meta information about the URCap. This occurs if the call stack originates from PolyScope (i.e.
if the exception occurred when PolyScope called a method defined in a URCap API interface
implemented by the URCap) or happens inside PolyScope (e.g. due to illegal arguments passed
in an API method call). In this case, it will also contain a section showing the stack trace from
the exception.

If an uncaught exception (e.g. a NullPointerException) happens in the source code of a URCap,
PolyScope will try to identify the failing URCap. If successful, the error dialog will be shown.
If PolyScope fails to identify the failing URCap, a general error dialog will be shown without
meta information.

URCap Development Tutorial 59 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

14 Troubleshooting

UNIVERSAL ROBOTS

14 Troubleshooting

Internally in PolyScope, a URCap is installed as an OSGi bundle with the Apache Felix OSGi
framework. For the purpose of debugging problems, it is possible to inspect various information

about bundles using the Apache Felix command shell.

You can establish a shell connection to the running Apache Felix by opening a TCP connection

on port 6666. Access the Apache Felix shell console by typing:

DT W N =

Note that you need to use the nc command, since the telnet command is not available on the

$ nc 127.0.0.1 6666

Felix Remote Shell Console:

robot, and 127.0.0.1 because localhost does not work on a robot.

To view a list of installed bundles and their state type the following command:

1 -> ps
2

3 ID
4 L 0]
5 [1]
6 [2]
7 [3]
8 [4]
9 [5]
10 L 6]
11 L 7]
12 .

13 [561
14 [57]
15 ->

START LEVEL 1

State
[Active
[Active
[Active
[Active
[Active
[Active
[Active
[Active

[Active
[Active

[S W S S S R S |

L B B W e W e W e W e

Name

System Bundle (5.2.0)

aopalliance (1.0)

org.aspectj.aspectjrt (1.8.2)
org.netbeans.awtextra (1.0)
net.java.balloontip (1.2.4)

cglib (2.2)

com.ur.dashboardserver (3.3.0.SNAPSHOT)
com.ur.domain (3.3.0.SNAPSHOT)

com.thoughtworks.xstream (1.3.1)
helloworldswing (1.0.0.SNAPSHOT)

Inside the shell you can type help to see the list of the available commands:

1 -> help

2 uninstall
3 sysprop

4 bundlelevel
5 find

6 version

7 headers

8 refresh

9 start

10 obr

11 inspect

12 ps

13 stop

14 shutdown
15 help

16 update

17 install

18 log

19 cd

20 startlevel
21 resolve

22

23 Use ’help <command-name>’
24 ->

for more information.

URCap Development Tutorial

60 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

127.0.0.1
localhost

14 Troubleshooting UNIVERSAL ROBOTS

For example, the headers command can be executed to display different properties of the indi-
vidual installed bundles.

URCap Development Tutorial 61 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

A URCaps and Generated Script Code UNIVERSAL ROBOTS

A URCaps and Generated Script Code

An URCap may generate script code for installation and program nodes. To aid debugging, the
generated script code for both node types is annotated with URCap information.

The following example is taken from a small program using the Hello World Swing URCap.

To see the generated script code for an URCap, it is required to save the program. Assuming
the program is called hello.urp, the corresponding script code can be found in hello.script.

The script code of the installation node will be surrounded with begin/end URCap comments
and information about the source of the URCap and its type:

begin: URCap Installation Node

Source: Hello World Swing, 1.0.0.SNAPSHOT, Universal Robots
Type: Hello World Swing

hello_world_swing_popup_title = "Hello,World"

end: URCap Installation Node

N O Ut W~

Similarly for program nodes, script code is surrounded with begin/end URCap comments and
information about the source of the URCap and its type as shown below. The program node
generated by PolyScope is the first label after the # begin: URCap Program Node, here $ 2. The
remaining labels until # end : URCap Program Node, here the statement $ 3, are the nodes inserted
under the Hello World program node.

begin: URCap Program Node

Source: Hello World Swing, 1.0.0.SNAPSHOT, Universal Robots

Type: Hello World Swing

$ 2 "HelloyWorld,Swing:_ Mygnode"

popup ("Hello My node,_ welcome to, PolyScope!", hello_world_swing_popup_title,
False, False, blocking=True)

$ 3 "Wait:, 0.01"

sleep (0.01)

end: URCap Program Node

DT W N

S © 00

=

URCap Development Tutorial 62 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

B My Daemon Program and Installation Node UNIVERSAL ROBOTS

B My Daemon Program and Installation Node

Listing 19: Java class defining functionality for the My Daemon installation node

package com.ur.urcap.examples.mydaemonswing.impl;

import com.ur.urcap.api.contribution.DaemonContribution;

import com.ur.urcap.api.contribution.InstallationNodeContribution;

import com.ur.urcap.api.contribution.installation.CreationContext;

import com.ur.urcap.api.contribution.installation.InstallationAPIProvider;

import com.ur.urcap.api.domain.data.DataModel;

import com.ur.urcap.api.domain.script.ScriptWriter;

import com.ur.urcap.api.domain.userinteraction.inputvalidation.
InputValidationFactory;

© 00U WN -

import
import
import

com.ur.urcap.api.domain.
com.ur.urcap.api.domain.
com.ur.urcap.api.domain.

userinteraction.keyboard.KeyboardInputCallback;
userinteraction.keyboard.KeyboardInputFactory;
userinteraction.keyboard.KeyboardTextInput;

14 import java.awt.x*;
15 import java.util.Timer;
16 import java.util.TimerTask;

18 public class MyDaemonInstallationNodeContribution implements
InstallationNodeContribution {

19 private static final String POPUPTITLE_KEY = "popuptitle";

20

21 private static final String XMLRPC_VARIABLE = "my_daemon_swing";
22 private static final String ENABLED_KEY = "enabled";

23 private static final String DEFAULT_VALUE = "HelloyMyyDaemon";
24 public static final int PORT = 40405;

25

26 private DataModel model;

27

28 private final MyDaemonInstallationNodeView view;

29 private final MyDaemonDaemonService daemonService;

30 private XmlRpcMyDaemonInterface xmlRpcDaemonInterface;

31 private Timer uiTimer;

32 private boolean pauseTimer = false;

33

34 private KeyboardInputFactory keyboardInputFactory;

35 private final InputValidationFactory inputValidationFactory;

36

37 public MyDaemonInstallationNodeContribution(InstallationAPIProvider

apiProvider , MyDaemonInstallationNodeView view, DataModel model,
MyDaemonDaemonService daemonService, CreationContext context) {

38 keyboardInputFactory = apiProvider.getUserInterfaceAPI().
getUserInteraction() .getKeyboardInputFactory();

39 inputValidationFactory = apiProvider.getUserInterfaceAPI().
getUserInteraction() .getInputValidationFactory () ;

40 this.view = view;

41 this.daemonService = daemonService;

42 this.model = model;

43 xmlRpcDaemonInterface = new XmlRpcMyDaemonInterface("127.0.0.1", PORT);

44 if (context.getNodeCreationType() == CreationContext.NodeCreationType.NEW)
{

45 model.set (POPUPTITLE_KEY, DEFAULT_VALUE) ;

46 }

47 applyDesiredDaemonStatus () ;

48 }

49

50 @Override

51 public void openView () {

52 view.setPopupText (getPopupTitle ());

53

URCap Development Tutorial 63 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

B My Daemon Program and Installation Node

UNIVERSAL ROBOTS

54 //UI updates from non-GUI threads must use EventQueue.invokelLater (or
SwingUtilities.invokeLater)

55 uiTimer = new Timer (true);

56 uiTimer.schedule (new TimerTask () {

57 @Override

58 public void run() {

59 EventQueue.invokeLater (new Runnable () {

60 @0verride

61 public void run() {

62 if (!pauseTimer) {

63 updateUI();

64 }

65 }

66 B

67 }

68 }, 0, 1000);

69 }

70

71 @0verride

72 public void closeView () {

73 if (uiTimer != null) {

74 uiTimer.cancel () ;

75 }

76 }

7

78 @0verride

79 public void generateScript(ScriptWriter writer) {

80 writer.assign (XMLRPC_VARIABLE, "rpc_factory (\"xmlrpc\", \"http
://127.0.0.1:" + PORT + "/RPC2\")");

81 // Apply the settings to the daemon on program start in the Installation
pre-amble

82 writer.appendLine (XMLRPC_VARIABLE + ".set_title(\"" + getPopupTitle() + "
A" ")

83 ¥

84

85 private void updateUI () {

86 DaemonContribution.State state = getDaemonState();

87

88 if (state == DaemonContribution.State.RUNNING) {

89 view.setStartButtonEnabled (false);

90 view.setStopButtonEnabled (true);

91 } else {

92 view.setStartButtonEnabled (true);

93 view.setStopButtonEnabled (false);

94 }

95

96 String text = "";

97 switch (state) {

98 case RUNNING:

99 text = "MygDaemon,runs";

100 break;

101 case STOPPED:

102 text = "MygDaemon stopped";

103 break;

104 case ERROR:

105 text = "MypDaemonyfailed";

106 break;

107 }

108

109 view.setStatusLabel (text);

110 ¥

111

112 public void onStartClick() {

113 model.set (ENABLED_KEY, true);

114 applyDesiredDaemonStatus () ;

115 }

116

URCap Development Tutorial 64

Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

B My Daemon Program and Installation Node UNIVERSAL ROBOTS

117
118
119
120
121
122
123
124
125
126
127

128
129
130
131
132
133

134
135
136
137
138
139
140
141
142
143
144

145
146
147

148
149
150
151
152
153
154
155
156
157

158

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

public void onStopClick() {
model.set (ENABLED_KEY, false);
applyDesiredDaemonStatus () ;

}

private void applyDesiredDaemonStatus () {
new Thread(new Runnable() {
@0verride
public void run() {
if (isDaemonEnabled ()) {
// Download the daemon settings to the daemon process on initial
start for real-time preview purposes
try {
pauseTimer = true;
awaitDaemonRunning (5000) ;
xmlRpcDaemonInterface.setTitle(getPopupTitle ());
} catch(Exception e){
System.err.println("Could notset,the title, in,the daemon process.

")
} finally {
pauseTimer = false;
}
} else {
daemonService.getDaemon () .stop();
¥
}
}) .start ();

}

private void awaitDaemonRunning(long timeOutMilliSeconds) throws
InterruptedException {
daemonService.getDaemon () .start ();
long endTime = System.nanoTime() + timeOutMilliSeconds * 1000L * 1000L;
while(System.nanoTime () < endTime && (daemonService.getDaemon().getState ()
!= DaemonContribution.State.RUNNING || !xmlRpcDaemonInterface.
isReachable (D)) {
Thread.sleep (100) ;
}
}

public String getPopupTitle() {
return model.get (POPUPTITLE_KEY, DEFAULT_VALUE);
}

public KeyboardTextInput getInputForTextField () {
KeyboardTextInput keyboardInput = keyboardInputFactory.
createStringKeyboardInput () ;
keyboardInput.setErrorValidator (inputValidationFactory.
createStringlengthValidator (1, 255));
keyboardInput.setInitialValue (getPopupTitle ());
return keyboardInput;

}

public KeyboardInputCallback<String> getCallbackForTextField () {
return new KeyboardInputCallback<String>() {
@0verride
public void onOk(String value) {
setPopupTitle (value);
view.setPopupText (value);
}
}s
}

private void setPopupTitle(String title) {
model.set (POPUPTITLE_KEY, title);
// Apply the new setting to the daemon for real-time preview purposes

URCap Development Tutorial 65 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

B My Daemon Program and Installation Node UNIVERSAL ROBOTS

176

177
178
179
180
181
182
183
184
185

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

}

// Note this might influence a running program, since the actual state is
stored in the daemon.

try {
xmlRpcDaemonInterface.setTitle(title);

} catch(Exception e){
System.err.println("Could not,set the, title in, the daemon process.");

}

¥

public boolean isDefined () {
return model.isSet (POPUPTITLE_KEY) && getDaemonState ()
DaemonContribution.State.RUNNING;

}

private DaemonContribution.State getDaemonState () {
return daemonService.getDaemon () .getState();

}

private Boolean isDaemonEnabled() {
return model.get (ENABLED_KEY, true); //This daemon is enabled by default
}

public String getXMLRPCVariable (){
return XMLRPC_VARIABLE;
}

public XmlRpcMyDaemonInterface getXmlRpcDaemonInterface () {
return xmlRpcDaemonInterface;

}

Listing 20: Java class defining functionality for the My Daemon program node

© 00O Ut WN =

e el el
DT W N~ O

17
18
19
20
21
22
23
24
25
26

27
28

29
30

package com.ur.urcap.examples.mydaemonswing.impl;

import com.ur.urcap.api.contribution.ProgramNodeContribution;

import com.ur.urcap.api.contribution.program.ProgramAPIProvider;

import com.ur.urcap.api.domain.data.DataModel;

import com.ur.urcap.api.domain.script.ScriptWriter;

import com.ur.urcap.api.domain.userinteraction.keyboard.KeyboardInputCallback;
import com.ur.urcap.api.domain.userinteraction.keyboard.KeyboardInputFactory;
import com.ur.urcap.api.domain.userinteraction.keyboard.KeyboardTextInput;

import java.awt.x*;
import java.util.Timer;
import java.util.TimerTask;

public class MyDaemonProgramNodeContribution implements

ProgramNodeContribution {
private static final String NAME = "name";

private final ProgramAPIProvider apiProvider;
private final MyDaemonProgramNodeView view;
private final DataModel model;

private Timer uiTimer;
private KeyboardInputFactory keyboardInputFactory;

public MyDaemonProgramNodeContribution(ProgramAPIProvider apiProvider,
MyDaemonProgramNodeView view, DataModel model) {
this.apiProvider = apiProvider;
keyboardInputFactory = apiProvider.getUserInterfaceAPI().
getUserInteraction() .getKeyboardInputFactory () ;
this.view = view;
this.model = model;

URCap Development Tutorial 66 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

B My Daemon Program and Installation Node UNIVERSAL ROBOTS

33

72

73

74
75
76
"
78
79
80
81
82
83

84
85

}

@0verride
public void openView() {
view.setNameText (getName ());

//UI updates from non-GUI threads must use EventQueue.invokelLater (or
SwingUtilities.invokeLater)
uiTimer = new Timer (true);
uiTimer.schedule (new TimerTask () {
@0verride
public void run() {
EventQueue.invokelLater (new Runnable() {
@0verride
public void run() {
updatePreview () ;
}
M
}
}, 0, 1000);
}

@0verride
public void closeView () {
uiTimer.cancel () ;

}

@0verride
public String getTitle () {
return "My Daemon: " + getName();

}

@0verride
public boolean isDefined () {

return getInstallation().isDefined() && !getName ().isEmpty();
}

@0verride

public void generateScript(ScriptWriter writer) {
// Interact with the daemon process through XML-RPC calls
// Note, alternatively plain sockets can be used.

writer.assign("mydaemon_message", getInstallation().getXMLRPCVariable () +
".get_message (\"" + getName() + "\")");
writer.assign("mydaemon_title", getInstallation().getXMLRPCVariable() + ".

get_title () ");

writer.appendLine ("popup (mydaemon_message , mydaemon_title,_ False, False,
blocking=True)");

writer.writeChildren () ;

}

private void updatePreview () {
String title;
String message;
try {
// Provide a real-time preview of the daemon state
title = getInstallation().getXmlRpcDaemonInterface().getTitle();
message = getInstallation().getXmlRpcDaemonInterface().getMessage (
getName ()) ;
} catch (Exception e) {
System.err.println("Could notyretrieve essentialdata from the daemon
processfor,the preview.");
title = message = "<Daemon_ disconnected>";

}

view.setTitlePreview(title);
view.setMessagePreview (message) ;

URCap Development Tutorial 67 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

B My Daemon Program and Installation Node UNIVERSAL ROBOTS

92

93 public KeyboardTextInput getInputForTextField() {

94 KeyboardTextInput keyboardTextInput = keyboardInputFactory.
createStringKeyboardInput ();

95 keyboardTextInput.setInitialValue (getName ());

96 return keyboardTextInput;

97 ¥

98

99 public KeyboardInputCallback<String> getCallbackForTextField () {

100 return new KeyboardInputCallback<String>() {

101 @0verride

102 public void onOk(String value) {

103 setName (value) ;

104 view.setNameText (value) ;

105 updatePreview () ;

106 }

107 };

108 ¥

109

110 private String getName () {

111 return model.get (NAME, "");

112 }

113

114 private void setName (String name) {

115 if ("".equals(name)){

116 model.remove (NAME) ;

117 Yelse{

118 model.set (NAME, name);

119 }

120 }

121

122 private MyDaemonInstallationNodeContribution getInstallation(){

123 return apiProvider.getProgramAPI().getInstallationNode (
MyDaemonInstallationNodeContribution.class);

124 }

125 }

Listing 21: Java class for XML-RPC communication

1 package com.ur.urcap.examples.mydaemonswing.impl;

2

3 import org.apache.xmlrpc.XmlRpcException;

4 import org.apache.xmlrpc.client.XmlRpcClient;

5 import org.apache.xmlrpc.client.XmlRpcClientConfigImpl;

6

7 import java.net.MalformedURLException;

8 import java.net.URL;

9 import java.util.ArrayList;

10

11 public class XmlRpcMyDaemonInterface {

12

13 private final XmlRpcClient client;

14

15 public XmlRpcMyDaemonInterface(String host, int port) {
16 XmlRpcClientConfigImpl config = new XmlRpcClientConfigImpl () ;
17 config.setEnabledForExtensions (true);

18 try {

19 config.setServerURL (new URL("http://" + host + ":" + port + "/RPC2"));
20 } catch (MalformedURLException e) {

21 e.printStackTrace () ;

22 }

23 config.setConnectionTimeout (1000); //1s

24 client = new XmlRpcClient();

25 client.setConfig(config);

26 }

27

URCap Development Tutorial 68 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

B My Daemon Program and Installation Node UNIVERSAL ROBOTS

43
44
45
46
47
48
49

50
51
52
53
54
55

57
58
59
60
61
62
63
64
65

66
67

69
70
71
72

public boolean isReachable() {
try {
client.execute("get_title", new ArrayList<String>());
return true;
} catch (XmlRpcException e) {
return false;
}
}

public String getTitle() throws XmlRpcException, UnknownResponseException {
Object result = client.execute("get_title", new ArrayList<String>());
return processString(result);

}

public String setTitle(String title) throws XmlRpcException,
UnknownResponseException {
ArrayList<String> args = new ArrayList<String>();
args.add(title);
Object result = client.execute("set_title", args);
return processString(result);

}

public String getMessage(String name) throws XmlRpcException,
UnknownResponseException {
ArrayList<String> args = new ArrayList<String>();
args.add (name) ;
Object result = client.execute("get_message", args);
return processString(result);

}

private boolean processBoolean(Object response) throws
UnknownResponseException {
if (response instanceof Boolean) {

Boolean val = (Boolean) response;
return val.booleanValue () ;
} else {

throw new UnknownResponseException();
}
}

private String processString(Object response) throws
UnknownResponseException {
if (response instanceof String) {
return (String) response;
} else {
throw new UnknownResponseException();

}

URCap Development Tutorial 69 Version 1.13.0

Copyright © 2009-2021 by Universal Robots A/S, all rights reserved

B My Daemon Program and Installation Node UNIVERSAL ROBOTS

Listing 22: hello-world.py Python 2.5 daemon example
#!/usr/bin/env python

import sys

1
2
3
4
5 from SimpleXMLRPCServer import SimpleXMLRPCServer
6 from SocketServer import ThreadingMixIn

7

8

title = ""
9
10 def set_title(new_title):
11 global title
12 title = new_title
13 return title
14
15 def get_title():
16 tmp = nn
17 if str(title):
18 tmp = title
19 else:
20 tmp = "Noytitlegset"
21 return tmp + ", (Python)"
22
23 def get_message (name):
24 if str(name):
25 return "Helloy" + str(name) + ", ,welcome,to PolyScope!"
26 else:
27 return "Noname set"
28

29 sys.stdout.write("MyDaemon daemon,started")
30 sys.stderr.write("MyDaemon daemon, started")

31

32 class MultithreadedSimpleXMLRPCServer (ThreadingMixIn, SimpleXMLRPCServer):
33 pass

34

35 server = MultithreadedSimpleXMLRPCServer (("127.0.0.1", 40405))

36 server.RequestHandlerClass.protocol_version = "HTTP/1.1"

37 server.register_function(set_title, "set_title")

38 server.register_function(get_title, "get_title")

39 server.register_function(get_message, "get_message")

40 server.serve_forever ()

URCap Development Tutorial 70 Version 1.13.0

	Introduction
	Features in URCap Software Platform 1.13.0

	Prerequisites
	URCap SDK
	Building and deploying URCaps
	Building
	Manual Deployment using PolyScope

	Structure of a URCap Project
	Deployment with Maven
	Contribution of an Installation Node
	UI of the Installation Node View
	Making the customized Installation Node available to PolyScope
	Functionality of the Installation Node
	Life Cycle of Contributions and Views

	Contribution of a Program Node
	UI of the Program Node View
	Linking View and Contribution
	Making the customized Program Nodes available to PolyScope
	Functionality of the Program Node
	Updating the data model
	Restrictions
	Undo/redo Functionality

	Loading Programs with Program Node Contributions
	Life Cycle of Contributions and Views

	Contribution of a Daemon
	Daemon Service
	Interaction with the Daemon
	C/C++ Daemon Executables
	Tying the different Contributions together

	URCap Examples Overview
	Regular Samples
	Driver Samples

	Creating new thin Projects using a Maven Archetype
	Compatibility
	Robot Series Compatibility
	Compatibility Flags
	Installation and Startup of URCaps
	Updating Existing URCaps

	API Compatibility
	Advanced compatibility

	Exception Handling
	Troubleshooting
	URCaps and Generated Script Code
	My Daemon Program and Installation Node

