
Original instructions (en) PolyScope X

Script Directory
PolyScope X

Contents
1. Introduction 1

2. Connecting to URControl 2

3. Numbers, Variables, and Types 3

4. Lists and Structs 4

4.1. Struct 4

4.1.1. Using a struct 4

4.2. List 5

4.2.1. Limitations of lists 5

4.3. Methods in URScript 6

4.3.1. Methods on List 6

4.3.2. Methods on Struct 8

4.3.3. Methods on Matrix 8

5. Matrix and Array Expressions 9

6. Flow of Control 11

6.1. Special keywords 11

7. Function 12

8. Remote Procedure Call (RPC) 13

8.1. closeXMLRPCClientConnection() 13

9. Scoping rules 14

10. Threads 16

10.1. Threads and scope 17

10.2. Thread scheduling 17

11. Program Label 19

12. Secondary Programs 20

12.1. Secondary Program Limitations 20

13. Interpreter Mode 21

13.1. Interpreter Mode replies 21

13.2. Entering Interpreter Mode 21

13.3. End Interpreter Mode 22

13.4. Clear Interpreter Mode 22

13.5. Aborting Current Function 23

13.6. Skip Non Executed Statements 23

13.7. State Commands for Interpreter Mode 23

13.8. Interpreter mode log files 24

14. Motion Version 25

Script Directory PolyScope X

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

14.1. Modifying the motion version 25

14.2. Availablity 25

15. Module motion 27

15.1. conveyor_pulse_decode(type, A, B) 27

15.2. encoder_enable_pulse_decode(encoder_index, decoder_type, A, B) 28

15.3. encoder_enable_set_tick_count(encoder_index, range_id) 28

15.4. encoder_get_tick_count(encoder_index, opt="") 29

15.5. encoder_set_tick_count(encoder_index, count) 29

15.6. encoder_unwind_delta_tick_count(encoder_index, delta_tick_count) 30

15.7. end_force_mode() 30

15.8. end_freedrive_mode() 31

15.9. end_screw_driving() 31

15.10. end_teach_mode() 31

15.11. force_mode(task_frame, selection_vector, wrench, type, limits) 31

15.12. force_mode_example() 32

15.13. force_mode_set_damping(damping) 32

15.14. force_mode_set_gain_scaling(scaling) 33

15.15. freedrive_mode (freeAxes=[1, 1, 1, 1, 1, 1], feature=p[0, 0, 0, 0, 0, 0]) 33

15.16. freedrive_mode_no_incorrect_payload_check() 34

15.17. get_conveyor_tick_count() 34

15.18. get_freedrive_status() 34

15.19. get_target_tcp_pose_along_path() 35

15.20. get_target_tcp_speed_along_path() 35

15.21. motion_version_get() 35

15.22. motion_version_set(version) 35

15.23. movec(pose_via, pose_to, a=1.2, v=0.25, r =0, mode=0) 36

15.24. movej(q, a=1.4, v=1.05, t=0, r =0) 37

15.25. movel(pose, a=1.2, v=0.25, t=0, r=0) 38

15.26. movep(pose, a=1.2, v=0.25, r=0) 38

15.27. optimovej(goal, a=0.3, v=0.3, r=0) 39

15.28. optimovel(goal, a=0.3, v=0.3, r=0) 40

15.29. path_offset_disable(a=20) 41

15.30. path_offset_enable() 41

15.31. path_offset_get(type) 42

15.32. path_offset_set(offset, type) 42

15.33. path_offset_set_alpha_filter(alpha) 43

15.34. path_offset_set_max_offset(transLimit, rotLimit) 43

15.35. pause_on_error_code(code, argument) 44

15.36. position_deviation_warning(enabled, threshold=0.8) 44

PolyScope X Script Directory

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

15.37. reset_revolution_counter(qNear=[0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) 45

15.38. screw_driving(f, v_limit) 45

15.39. servoj(q, a, v, t=0.002, lookahead_time=0.1, gain=300) 46

15.40. set_conveyor_tick_count(tick_count, absolute_encoder_resolution=0) 47

15.41. set_pos(q) 47

15.42. set_safety_mode_transition_hardness(type) 48

15.43. speedj(qd, a, t) 48

15.44. speedl(xd, a, t, aRot=’a’) 48

15.45. stop_conveyor_tracking(a=20) 49

15.46. stopj(a) 49

15.47. stopl(a, aRot=’a’) 49

15.48. tool_wrench_limit_set(frame_offset, Fx, Fy, Fz, Mx, My, Mz) 50

15.49. tool_wrench_limit_disable() 51

15.50. teach_mode() 51

15.51. track_conveyor_circular(center, ticks_per_revolution, rotate_tool=’False’, encoder_
index=0) 51

15.52. track_conveyor_linear(direction, ticks_per_meter, encoder_index=0) 52

16. Module internals 53

16.1. force() 53

16.2. estimate_payload(poses, wrenches) 53

16.3. get_actual_joint_positions() 54

16.4. get_actual_joint_positions_history(steps=0) 54

16.5. get_actual_joint_speeds() 54

16.6. get_actual_tcp_pose() 54

16.7. get_actual_tcp_speed() 55

16.8. get_actual_tool_flange_pose() 55

16.9. get_base_acceleration() 55

16.10. get_controller_temp() 55

16.11. get_forward_kin(q=’current_joint_positions’, tcp=’active_tcp’) 56

16.12. get_gravity() 56

16.13. get_inverse_kin(x, qnear, maxPositionError =1e-10,maxOrientationError =1e-10,
tcp=’active_tcp’) 56

16.14. get_inverse_kin_has_solution(pose, qnear, maxPositionError=1E-10,
maxOrientationError=1e-10, tcp="active_tcp") 57

16.15. get_joint_temp(j) 58

16.16. get_joint_torques() 58

16.17. get_steptime() 58

16.18. get_target_joint_positions() 58

16.19. get_target_joint_speeds() 59

Script Directory PolyScope X

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

16.20. get_target_payload() 59

16.21. get_target_payload_cog() 59

16.22. get_target_payload_inertia() 59

16.23. get_target_tcp_pose() 60

16.24. get_target_tcp_speed() 60

16.25. get_target_waypoint() 60

16.26. get_tcp_force() 60

16.27. get_tcp_offset() 61

16.28. get_tool_accelerometer_reading() 61

16.29. get_tool_current() 62

16.30. get_tool_temp() 62

16.31. high_holding_torque_disable() 62

16.32. high_holding_torque_enable() 63

16.33. is_steady() 63

16.34. is_within_safety_limits(position, qNear=current joint configuration) 63

16.35. popup(s, title=’Popup’, warning=False, error=False, blocking=False) 64

16.36. powerdown() 64

16.37. protective_stop() 64

16.38. set_base_acceleration(a) 65

16.39. set_baselight_off() 65

16.40. set_baselight_iec() 65

16.41. set_baselight_solid(r,g,b) 66

16.42. set_gravity(d) 66

16.43. set_payload(m, cog) 66

16.44. set_payload_cog(CoG) 67

16.45. set_payload_mass(m) 67

16.46. set_target_payload(m, cog, inertia=[0, 0, 0, 0, 0, 0], transition_time=0) 68

16.47. set_tcp(pose, tcp_name="") 69

16.48. sleep(t) 69

16.49. time(mode=0) 69

16.50. str_at(src, index) 71

16.51. str_cat(op1, op2) 71

16.52. str_empty(str) 72

16.53. str_find(src, target, start_from=0) 73

16.54. str_len(str) 73

16.55. str_sub(src, index, len) 74

16.56. sync() 74

16.57. textmsg(s1, s2=’’) 75

16.58. to_num(str) 75

PolyScope X Script Directory

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

16.59. to_str(val) 76

16.60. tool_contact(direction) 76

16.61. tool_contact_examples() 77

17. Module urmath 78

17.1. acos(f) 78

17.2. asin(f) 78

17.3. atan(f) 78

17.4. atan2(x, y) 79

17.5. binary_list_to_integer(l) 79

17.6. ceil(f) 80

17.7. cos(f) 80

17.8. d2r(d) 80

17.9. floor(f) 81

17.10. make_list(length, initial_value, capacity=length) 81

17.11. get_list_length(v) 82

17.12. integer_to_binary_list(x) 82

17.13. interpolate_pose(p_from, p_to, alpha) 83

17.14. inv(m) 83

17.15. length(v) 84

17.16. log(b, f) 84

17.17. norm(a) 85

17.18. normalize(v) 85

17.19. point_dist(p_from, p_to) 85

17.20. pose_add(p_1, p_2) 86

17.21. pose_dist(p_from, p_to) 86

17.22. pose_inv(p_from) 87

17.23. pose_sub(p_to, p_from) 87

17.24. pose_trans(p_from, p_from_to) 88

17.25. pow(base, exponent) 88

17.26. r2d(r) 89

17.27. random() 89

17.28. rotvec2rpy(rotation_vector) 89

17.29. rpy2rotvec(rpy_vector) 90

17.30. sin(f) 90

17.31. size(v) 90

17.32. sqrt(f) 91

17.33. tan(f) 91

17.34. transpose(m) 92

17.35. wrench_trans(T_from_to, w_from) 92

Script Directory PolyScope X

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

18. Module interfaces 93

18.1. enable_external_ft_sensor(enable, sensor_mass=0.0, sensor_measuring_offset=[0.0,
0.0, 0.0], sensor_cog=[0.0, 0.0, 0.0]) 93

18.2. ft_rtde_input_enable(enable, sensor_mass=0.0, sensor_measuring_offset=[0.0, 0.0, 0.0],
sensor_cog=[0.0, 0.0, 0.0]) 94

18.3. get_analog_in(n) 95

18.4. get_analog_out(n) 95

18.5. get_configurable_digital_in(n) 96

18.6. get_configurable_digital_out(n) 96

18.7. get_digital_in(n) 96

18.8. get_digital_out(n) 97

18.9. get_flag(n) 97

18.10. get_rtde_value(key) 98

18.11. get_standard_analog_in(n) 98

18.12. get_standard_analog_out(n) 99

18.13. get_standard_digital_in(n) 99

18.14. get_standard_digital_out(n) 99

18.15. get_tool_analog_in(n) 100

18.16. get_tool_digital_in(n) 100

18.17. get_tool_digital_out(n) 101

18.18. modbus_add_signal(IP, slave_number, signal_address, signal_type, signal_name,
sequential_mode=False, register_count=1) 101

18.19. modbus_add_rw_signal(IP, slave_number, read_address, read_register_count, write_
address, write_register_count, signal_name, sequential_mode=False) 103

18.20. modbus_delete_signal(signal_name) 104

18.21. modbus_get_signal_status(signal_name, is_secondary_program=False) 104

18.22. modbus_send_custom_command(IP, slave_number, function_code, data) 105

18.23. modbus_set_digital_input_action(signal_name, action) 105

18.24. modbus_set_output_register(signal_name, register_value, is_secondary_
program=False) 106

18.25. modbus_set_output_signal(signal_name, digital_value, is_secondary_program, False) 107

18.26. modbus_set_signal_update_frequency(signal_name, update_frequency) 107

18.27. modbus_get_error(signal_name) 108

18.28. modbus_get_time_since_signal_invalid(signal_name) 109

18.29. modbus_request_update_signal_value(signal_name) 109

18.30. modbus_reset_connection(connection_id, is_blocking=True) 110

18.31. modbus_set_signal_watchdog(signal_name, new_timeout_in_sec) 110

18.32. read_input_boolean_register(address) 110

18.33. read_input_float_register(address) 111

18.34. read_input_integer_register(address) 111

PolyScope X Script Directory

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

18.35. read_output_boolean_register(address) 112

18.36. read_output_float_register(address) 112

18.37. read_output_integer_register(address) 113

18.38. read_port_bit(address) 113

18.39. read_port_register(address) 113

18.40. rpc_factory(type, url) 114

18.41. rtde_set_watchdog(variable_name, min_frequency, action=’pause’) 115

18.42. set_analog_inputrange(port, range) 115

18.43. set_analog_out(n, f) 116

18.44. set_configurable_digital_out(n, b) 116

18.45. set_digital_out(n, b) 116

18.46. set_flag(n, b) 117

18.47. set_standard_analog_out(n, f) 117

18.48. set_standard_digital_out(n, b) 117

18.49. set_tool_digital_out(n, b) 118

18.50. set_tool_communication(enabled, baud_rate, parity, stop_bits, 118

18.51. set_tool_digital_output_mode (n, mode) 119

18.52. set_tool_output_mode (mode) 119

18.53. set_tool_voltage(voltage) 120

18.54. socket_close(socket_name=’socket_0’) 120

18.55. socket_get_var(name, socket_name=’socket_0’) 120

18.56. socket_open(address, port, socket_name=’socket_0’) 121

18.57. socket_read_ascii_float(number, socket_name=’socket_0’, timeout=2) 121

18.58. socket_read_binary_integer(number, socket_name=’socket_0’, timeout=2) 122

18.59. socket_read_byte_list(number, socket_name=’socket_0’, timeout=2) 123

18.60. socket_read_line(socket_name=’socket_0’, timeout=2) 123

18.61. socket_read_string(socket_name=’socket_0’, prefix =’’, suffix =’’, interpret_
escape=’False’, timeout=2) 124

18.62. socket_send_byte(value, socket_name=’socket_0’) 125

18.63. socket_send_int(value, socket_name=’socket_0’) 125

18.64. socket_send_line(str, socket_name=’socket_0’) 126

18.65. socket_send_string(str, socket_name=’socket_0’) 126

18.66. socket_set_var(name, value, socket_name=’socket_0’) 127

18.67. write_output_boolean_register(address, value) 127

18.68. write_output_float_register(address, value) 128

18.69. write_output_integer_register(address, value) 128

18.70. write_port_bit(address, value) 128

18.71. write_port_register(address, value) 129

18.72. zero_ftsensor() 129

Script Directory PolyScope X

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

18.73. request_boolean_from_primary_client(message) 129

18.74. request_float_from_primary_client(message) 130

18.75. request_integer_from_primary_client(message) 130

18.76. request_string_from_primary_client(message) 130

19. Module ioconfiguration 132

19.1. modbus_set_runstate_dependent_choice(signal_name, runstate_choice) 132

19.2. set_analog_outputdomain(port, domain) 132

19.3. set_configurable_digital_input_action(port, action) 133

19.4. set_gp_boolean_input_action(port, action) 133

19.5. set_input_actions_to_default() 134

19.6. set_runstate_configurable_digital_output_to_value(outputId, state) 134

19.7. set_runstate_gp_boolean_output_to_value(outputId, state) 135

19.8. set_runstate_standard_analog_output_to_value(outputId, state) 136

19.9. set_runstate_standard_digital_output_to_value(outputId, state) 136

19.10. set_runstate_tool_digital_output_to_value(outputId, state) 137

19.11. set_standard_analog_input_domain(port, domain) 138

19.12. set_standard_digital_input_action(port, action) 138

19.13. set_tool_analog_input_domain(port, domain) 139

19.14. set_tool_digital_input_action(port, action) 139

PolyScope X Script Directory

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

1. Introduction
The Universal Robot can be controlled at two levels:

• The PolyScope or the Graphical User Interface Level

• Script Level

At the Script Level, the URScript is the programming language that controls the robot.

The URScript includes variables, types, and the flow control statements. There are also built-in variables and
functions that monitor and control I/O and robot movements.

Script Directory 1 PolyScope X

1. Introduction

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

2. Connecting to URControl
URControl is the low-level robot controller running on the Embedded PC in the Control Box cabinet. When the
PC boots up, the URControl starts up as a daemon (i.e., a service) and the PolyScope or Graphical User
Interface connects as a client using a local TCP/IP connection.

Programming a robot at the Script Level is done by writing a client application (running at another PC) and
connecting to URControl using a TCP/IP socket.

Hostname: ur-<serial number> (or the IP address found in the About Dialog-Box in PolyScope if the robot is
not in DNS).

• port: 30002

When a connection has been established URScript programs or commands are sent in clear text on the
socket. Each line is terminated by “\n”. Note that the text can only consist of extended ASCII characters.

The following conditions must be met to ensure that the URControl correctly recognizes the script:

• The script must start from a function definition or a secondary function definition (either "def" or "sec"
keywords) in the first column

• All other script lines must be indented by at least one white space

• The last line of script must be an "end" keyword starting in the first column

Important:
It is recommended to always read data from the socket. At least 79 bytes have to be read from socket before
closing to ensure that underlying TCP protocol closes socket orderly. Otherwise data sent from client may be
discarded before script is executed.

It is especially important in cases when socket is opened just to send single script, and closed immediately.

It is recommended to keep sockets open instead of opening end closing for each and every request.

PolyScope X 2 Script Directory

2. Connecting to URControl

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

3. Numbers, Variables, and Types
In URScript arithmetic expression syntax is standard:

1+2-3

4*5/6

(1+2)*3/(4-5)

2346.44 % 10

"Hello" + ", " + "World!"

In boolean expressions, boolean operators are spelled out:

True or False and (1 == 2) 1 > 2 or 3 != 4 xor 5 < -6

not 42 >= 87 and 87 <= 42

"Hello" != "World" and "abc" == "abc"

Variable assignment is done using the equal sign =:

foo = 42

bar = False or True and not False baz = 87-13/3.1415

hello = "Hello, World!" l = [1,2,4]

target = p[0.4,0.4,0.0,0.0,3.14159,0.0]

The fundamental type of a variable is deduced from the first assignment of the vari- able. In the example above
foo is an int and bar is a bool. target is a pose: a combination of a position and orientation.

The fundamental types are:

• none

• bool

• number - either int or float

• pose

• string

A pose is given as p[x,y,z,ax,ay,az], where x,y,z is the position of the TCP, and ax,ay,az is the
orientation of the TCP, given in axis-angle notation.

Note that strings are fundamentally byte arrays without knowledge of the encoding used for the characters it
contains. Therefore some string functions that may appear to operate on characters (e.g. str_len), actually
operates on bytes and the result may not correspond to the expected one in case of string containing
sequences of multi-byte or variable-length characters. Refer to the description of the single function for more
details.

Script Directory 3 PolyScope X

3. Numbers, Variables, and Types

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

4. Lists and Structs

4.1. Struct
A set of variables can be aggregated into structs, and thus transferred and stored as a single variable.

Structs can be obtained through multiple means:

• Using the struct function

• Doing an RPC call that returns a struct

• Receiving ROS2 message (available on Polyscope X only)

The struct function takes one or more named arguments, and each argument name becomes a member in the
struct. All values must be initialized by value, and the type of the value cannot be changed subsequently.

4.1.1. Using a struct

Create a struct:

myStruct = struct(identifier1 = 1, identifier2 = 2, myMember = "Hello structs",
listMember = [1,2,3])

Reassign a member:

myStruct.myMember = "Goodbye structs"

Use a member:

myVar = myStruct.myMember

Use a nested list:

myListElement = myStruct.listMember[0]

Use the second member by index (identifier2):

myVar = myStruct[1]

A nested struct, stored by value:

myStruct = struct(myStructMember = struct(myMember = "Hi nested struct"))

Conversion of a struct to a list, if all the struct members are of same type and if the list has the same type.
Value of myList will be [1.1, 2.2, 3.3, 4.4].

myStruct = struct(m1 = 1.1, m2 = 2.2, m3 = 3.3, m4 = 4.4)
myList = [0.0, 0.0, 0.0, 0.0]
myList = myStruct

Structs can be passed to and returned from function. In this example we create a new struct extended with a
boolean member.

struct_1 = struct(m1 = 1.1, m2="a string", m3=[1,2,3])
def ExtendStructWithBoolMember(struct_arg):

struct_local = struct(m1 = 0.0, m2 = "n/a", m3 = make_list(0, 0, 10), extra_
member = False)

struct_local.m1 = struct_arg.m1
struct_local.m2 = struct_arg.m2

PolyScope X 4 Script Directory

4. Lists and Structs

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

struct_local.m3 = struct_arg.m3
struct_local.extra_member = True
return struct_local

end

new_extended_struct = ExtendStructWithBoolMember(struct_1)

4.2. List
A list is a set of variables with the same type aggregated into a single object.

A list object in URScript has two attributes: length and capacity. The length indicates how many elements the
list currently holding. The capacity tells how many elements the list can hold maximum.

Once declared, the capacity of the list cannot be changed.

Fixed length lists can be created with square bracket operator:

aa = [11, 22, 33, 44, 55, 66, 77]

Both length and capacity of this list is equal to 7.

Variable length lists can be created:

bb = make_list(length = 7, initial_value = 11, capacity = 20)

Length of this list is 7, but capacity is 20. List can be extended and contracted between 0, and 20 numeric
elements.

Lists can hold any type that URScript supports. This includes complex values created with struct() keyword:

aa = [1, 2, 3.5, 4, 5.5]
bb = make_list(10, struct(p1 = 1, p2 = "text"), 10)
cc = ["a", "b", "c", "d"]
dd = [struct(m1 = 10, m2 = "hello", m3 = make_list(length = 25, initial_value

= 0, capacity = 100)) , struct(m1 = 20, m2 = "hi", m3 = make_list(length = 50,
initial_value = 0, capacity = 100))]

List can be assigned only to existing list of greater or equal capacity to the length of source list:

aa = [1, 2, 3, 4, 5, 6] # aa.length() == 6, aa.capacity() == 6
bb = make_list(5, 0, 100) # bb.length() == 5, bb.capacity() == 100
aa = bb # aa capacity will remain 6 aa length will be 5
aa = [1, 2, 3, 4, 5, 6]
bb = aa # bb capacity will remain 100 bb length will be 6

List can hold structs (aka complex data types). All structs in the list have to be exactly of the same type:

aa = make_list(10, struct(p1 = 1, p2 = "text"), 10)
a = aa[4].p1 # a = 1
b = aa[4].p2 # b = "text"
aa[3].p1 = 22.5
aa[4] = struct(p1 = 99, p2 = "different text")

4.2.1. Limitations of lists

Lists can be passed to, and returned from functions only as copy by value.

List elements can't change type.

Script Directory 5 PolyScope X

4. Lists and Structs

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

If list is returned from a function or list method, then the target list have to be earlier initialized with enough
capacity.

List of lists is not supported as this is how matrices are implemented in URScript.

4.3.Methods in URScript
Starting from Polyscope 5.15, methods (member functions) are callables on list, matrix and structs (currently).
The name of the list followed by a "." will invoke the function.

4.3.1. Methods on List

append(element)

Adds the element to the end of the list. Raises an error if at capacity.

Example: add the value 88 to a list.

l1 = make_list(0, 0, 10) # empty list of integers with capacity of 10

l1.append(88) # add element to the end of the list, length increases, exception
thrown if capacity exceeded

capacity()

Returns the maximum capacity of the list (>=length).

Example: merge list 2 to list 1 until list 1 is full. result: [-1, -1, -1, -1, -1, 6, 7, 8, 9, 10]

l1 = make_list(5, -1, 10)
l2 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
idx = l1.length()
while(idx < l1.capacity()):

l1.append(l2[idx])
idx = idx + 1

end

clear()

Clear the list by setting length to 0.

list_1.clear() # list_1 will be []

excess_capacity()

Returns the unused capacity (= capacity-length).

Example: add element if the list has free space. result: [9,9,9,9,9,1,2,3,4,5]; popup "no more space"

l1 = make_list(5, 9, 10)
l2 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
idx = 0
while(idx < l2.length()):

if(l1.excess_capacity() > 0):
l1.append(l2[idx])

PolyScope X 6 Script Directory

4. Lists and Structs

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

else:
popup("no more space")
break

end
idx = idx + 1

end

extend(list of elements)

Adds all elements from the parameter list at the end. Raises an error if at capacity. The list in the input must be
of the same type as the list.

Example: add list 2 to list 1. result = [0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

l1 = make_list(2, 0, 100)
l2 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

if l1.excess_capacity() >= l2.length():
l1.extend(l2)

end

insert(index, element)

Inserts the element at the given index, shifting remaining list. Raises an error if at capacity.

length()

Returns the current length of the list.

Example: update elements of a list in a loop

l1 = [1, 2, 3, 4, 5, 6]
idx = 0

while (idx < l1.length()):
l1[idx] = 10 + idx
idx = idx + 1

end

pop()

Removes the last element from the list.

remove(index)

Removes the element at a given index.

Example: remove even numbers from a collection.

l2 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 10, 10, 11]
idx = l2.length() - 1

while(idx > 0):
if(l2[idx] % 2 == 0):
l2.remove(idx)
end

idx = idx - 1

Script Directory 7 PolyScope X

4. Lists and Structs

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

end

slice(begin index, end index)

Returns a sub-list of elements [list[param1]... list[param2-1]]. Does not modify the original list.

to_string()

Returns a string representation of the list. has ...] if out of space.

4.3.2. Methods on Struct

length()

Returns the number of elements in the struct.

to_string()

Returns a string representation of the struct. has ...} if out of space.

4.3.3. Methods onMatrix

get_column(index)

Returns the column at the index by value.

get_row(index)

Returns the row at the index by value.

shape()

Returns the number of rows and columns in the matrix.

to_string()

Returns a string representation of the list. has ...] if out of space.

PolyScope X 8 Script Directory

4. Lists and Structs

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

5. Matrix and Array Expressions
Matrix and array operations can be assigned to a variable to store and manipulate multiple numbers at the
same time. It is also possible to get access and write to a single entry of the matrix. The matrix and array are 0-
indexed.

array = [1,2,3,4,5]

a = array[0]

array[2] = 10

matrix = [[1,2],[3,4],[5,6]]

b = matrix[0,0]

matrix[2,1] = 20

Matrix and array can be manipulated by matrix-matrix, array-array,matrix-array,matrixscalar and array-scalar
operations.

Matrix-matrix multiplication operations are supported if the first matrix’s number of columns matches the
second matrix’s number of rows. The resulting matrix will have the dimensions of the first matrix number of
rows and the second matrix number of columns.

C = [[1,2],[3,4],[5,6]] * [[10,20,30],[40,50,60]]

Matrix-array multiplication operations are supported if the matrix is the first operand and array is second. If the
matrix’s number of columns matches the arrays length, the resulting array will have the length as the matrix
number of rows.

C = [[1,2],[3,4],[5,6]] * [10,20]

Array-array operations are possible if both arrays are of the same length and supports: addition, subtraction,
multiplication, division and modulo operations. The operation is executed index by index on both arrays and
thus results in an array of the same length. E.g. a[i] b[i] = c[i].

mul = [1,2,3] * [10,20,30]

div = [10,20,30] / [1,2,3]

add = [1,2,3] + [10,20,30]

sub = [10,20,30] - [1,2,3]

mod = [10,20,30] % [1,2,3]

Scalar operations on a matrix or an array are possible. They support addition, subtraction, multiplication,
division and modulo operations. The scalar operations are done on all the entries of the matrix or the array.
E.g. a[i] + b = c[i]

mul1 = [1,2,3] * 5

mul2 = 5 * [[1,2],[3,4],[5,6]]

div1 = [10,20,30] / 10

div2 = 10 / [10,20,30]

add1 = [1,2,3] + 10

add2 = 10 + [1,2,3]

sub1 = [10,20,30] - 5

Script Directory 9 PolyScope X

5. Matrix and Array Expressions

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

sub2 = 5 - [[10,20],[30,40]]

mod1 = [11,22,33] % 5

mod2 = 121 % [[10,20],[30,40]]

PolyScope X 10 Script Directory

5. Matrix and Array Expressions

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

6. Flow of Control
The flow of control of a program is changed by if-statements:

if a > 3:

a = a + 1

elif b < 7:

b = b * a

else:

a = a + b

end

and while-loops:

l = [1,2,3,4,5]

i = 0

while i < 5:

l[i] = l[i]*2

i = i + 1

end

You can use break to stop a loop prematurely and continue to pass control to the next iteration of the
nearest enclosing loop.

6.1. Special keywords
• halt immediately stops program execution and terminates the program. Not advisible while robot is in
motion.

• return returns from a function. When no value is returned, the keyword Nonemust follow the keyword
return.

• pause pauses program execution.

Script Directory 11 PolyScope X

6. Flow of Control

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

7. Function
A function is declared as follows:

def add(a, b):

return a+b

end

The function can then be called like this:

result = add(1, 4)

It is also possible to give function arguments default values:

def add(a=0,b=0):

return a+b

end

If default values are given in the declaration, arguments can be either input or skipped as below:

result = add(0,0)

result = add()

When calling a function, it is important to comply with the declared order of the ar- guments. If the order is
different from its definition, the function does not work as ex- pected.

Arguments can only be passed by value (including arrays). This means that any modi- fication done to the
content of the argument within the scope of the function will not be reflected outside that scope.

def myProg()

a = [50,100]

fun(a)

def fun(p1):

p1[0] = 25

assert(p1[0] == 25)

...

end

assert(a[0] == 50)

...

end

URScript also supports named parameters.

PolyScope X 12 Script Directory

7. Function

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

8. Remote ProcedureCall (RPC)
Remote Procedure Calls (RPC) are similar to normal function calls, except that the function is defined and
executed remotely. On the remote site, the RPC function being called must exist with the same number of
parameters and corresponding types (together the function’s signature). If the function is not defined remotely,
it stops program execution. The controller uses the XMLRPC standard to send the parameters to the remote
site and retrieve the result(s). During an RPC call, the controller waits for the remote function to complete.
The XMLRPC standard is among others supported by C++ (xmlrpc-c library), Python and Java.

Creating a URScript program to initialize a camera, take a snapshot and retrieve a new target pose:

camera = rpc_factory("xmlrpc", "http://127.0.0.1/RPC2")

if (! camera.initialize("RGB")):

popup("Camera was not initialized")

camera.takeSnapshot()

target = camera.getTarget()

camera.closeXMLRPCClientConnection()

...

First the rpc_factory (see Interfaces section) creates an XMLRPC connection to the specified
remote server. The camera variable is the handle for the remote function calls. You must initialize the camera
and therefore call camera.initialize("RGB").

The function returns a boolean value to indicate if the request was successful. In order to find a target position,
the camera first takes a picture, hence the camera.takeSnapshot() call. Once the snapshot is taken, the
image analysis in the remote site calculates the location of the target. Then the program asks for the exact
target location with the function call target = camera.getTarget(). On return the target
variable is as- signed the result. The camera.initialize("RGB"), takeSnapshot() and
getTarget() functions are the responsibility of the RPC server.

The closeXMLRPCClientConnection is closing the XMLRPC connection created by the rpc_factory. It
is recommended to close the connection periodically, or when it's not used for a longer time. Some server
implementations by default have a limit of rpc requests or inactivity watchdog timers.

NOTE: The RPC handle does not automatically close the connecetion.

The technical support website: http://www.universal-robots.com/support contains more examples of XMLRPC
servers.

8.1. closeXMLRPCClientConnection()

Closes a Remote Procedure Call (RPC) handle.

Script Directory 13 PolyScope X

8. Remote Procedure Call (RPC)

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

http://www.universal-robots.com/support

9. Scoping rules
A URScript program is declared as a function without parameters:

def myProg():

end

Every variable declared inside a program has a scope. The scope is the textual region where the variable is
directly accessible. Two qualifiers are available to modify this visibility:

• local qualifier tells the controller to treat a variable inside a function, as being truly local, even if a
global variable with the same name exists.

• global qualifier forces a variable declared inside a function, to be globally accessible.

For each variable the controller determines the scope binding, i.e. whether the variable is global or local. In
case no local or global qualifier is specified (also called a free variable), the controller will first try to find the
variable in the globals and otherwise the variable will be treated as local.

In the following example, the first a is a global variable and the second a is a local variable. Both variables are
independent, even though they have the same name:

def myProg():

global a = 0

def myFun():

local a = 1

...

end

...

end

Beware that the global variable is no longer accessible from within the function, as the local variable masks the
global variable of the same name.

In the following example, the first a is a global variable, so the variable inside the function is the same variable
declared in the program:

def myProg():

global a = 0

def myFun():

a = 1

...

end

...

end

For each nested function the same scope binding rules hold. In the following example, the first a is global
defined, the second local and the third implicitly global again:

PolyScope X 14 Script Directory

9. Scoping rules

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

def myProg():

global a = 0

def myFun():

local a = 1

def myFun2():

a = 2

...

end

...

end

...

end

The first and third a are one and the same, the second a is independent.

Variables on the first scope level (first indentation) are treated as global, even if the global qualifier is
missing or the local qualifier is used:

def myProg():

a = 0

def myFun():

a = 1

...

end

...

end

The variables a are one and the same.

Script Directory 15 PolyScope X

9. Scoping rules

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

10. Threads
Threads are supported by a number of special commands.

To declare a new thread a syntax similar to the declaration of functions are used:

thread myThread():

Do some stuff

return False

end

A couple of things should be noted. First of all, a thread cannot take any parameters, and so the parentheses
in the declaration must be empty. Second, although a return statement is allowed in the thread, the value
returned is discarded, and cannot be accessed from outside the thread. A thread can contain
other threads, the same way a function can contain other functions. Threads can in other words be nested,
allowing for a thread hierarchy to be formed.

To run a thread use the following syntax:

thread myThread():

Do some stuff

return False

end

thrd = run myThread()

The value returned by the run command is a handle to the running thread. This handle can be used to interact
with a running thread. The run command spawns from the new thread, and then executes the instruction
following the run instruction.

A thread can only wait for a running thread spawned by itself. To wait for a running thread to finish, use the join
command:

thread myThread():

Do some stuff

return False

end

thrd = run myThread()

join thrd

This halts the calling threads execution, until the specified thread finishes its execution. If the thread is already
finished, the statement has no effect.

To kill a running thread, use the kill command:

thread myThread():

Do some stuff

return False

PolyScope X 16 Script Directory

10. Threads

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

end

thrd = run myThread()

kill thrd

After the call to kill, the thread is stopped, and the thread handle is no longer valid. If the thread has children,
these are killed as well.

To protect against race conditions and other thread-related issues, support for critical sections is provided. A
critical section ensures the enclosed code can finish running before another thread can start running. The
previous statement is always true, unless a time-demanding command is present within the scope of the
critical section. In such a case, another thread will be allowed to run. Time-demanding commands include
sleep, sync, move-commands, and socketRead. Therefore, it is important to keep the critical section as short
as possible. The syntax is as follows:

thread myThread():

enter_critical

Do some stuff

exit_critical

return False

end

10.1. Threads and scope
The scoping rules for threads are exactly the same, as those used for functions. See 1.7 for a discussion of
these rules.

10.2. Thread scheduling
Because the primary purpose of the URScript scripting language is to control the robot, the scheduling policy
is largely based upon the realtime demands of this task.

The robot must be controlled a frequency of 500 Hz, or in other words, it must be told what to do every 0.002
second (each 0.002 second period is called a frame). To achieve this, each thread is given a “physical” (or
robot) time slice of 0.002 seconds to use, and all threads in a runnable state is then scheduled in a 1 fashion.

Each time a thread is scheduled, it can use a piece of its time slice (by executing instructions that control the
robot), or it can execute instructions that do not control the robot, and therefore do not use any “physical” time.
If a thread uses up its entire time slice, either by use of “physical” time or by computational heavy instructions
(such as an infinite loop that do not control the robot) it is placed in a non-runnable state, and is not allowed to
run until the next frame starts. If a thread does not use its time slice within a frame, it is expected to switch to a
non-runnable state before the end of 2. The reason for this state switching can be a join instruction or simply
because the thread terminates.

1Before the start of each frame the threads are sorted, such that the thread with the largest remaining time
slice is to be scheduled first.
2If this expectation is not met, the program is stopped.

Script Directory 17 PolyScope X

10. Threads

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

It should be noted that even though the sleep instruction does not control the robot, it still uses “physical”
time. The same is true for the sync instruction. Inserting sync or sleep will allow time for other threads to be
executed and is therefore recommended to use next to computational heavy instructions or inside infinite
loops that do not control the robot, otherwise an exception like "Lost communication with Controller" can be
raised with a consequent protective stop.

PolyScope X 18 Script Directory

10. Threads

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

11. ProgramLabel
Program label code lines, with an “$” as first symbol, are special lines in programs generated by PolyScope
that make it possible to track the execution of a program.

$ 2 "var_1= True"

global var_1= True

Script Directory 19 PolyScope X

11. Program Label

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

12. Secondary Programs
Secondary program is executed by the robot controller concurrently and simultaneously with the primary script
program. It could be used to handle the I/O signals, while the primary program moves the robot between
waypoints. A secondary program could be sent to controller via primary or secondary TCP/IP socket, just like
any other script program and must follow the same script syntax as regular robot programs.

Notable exception is that secondary program should not use any “physical” time. In particular, it cannot contain
sleep, or move statements. Secondary program must be simple enough to be executed in a single controller
step, without blocking the realtime thread.

Exceptions on secondary program do not stop execution of the primary program. Exceptions are reported in
robot controller log files.

The secondary function must be defined using the keyword "sec" as follows:

sec secondaryProgram():

set_digital_out(1,True)

end

12.1. Secondary ProgramLimitations
Secondary programs are typically run as support programs, they are designed to be executed concurrently
with the primary program using real time control loop. Entire execution time is added to single real time cycle.
Due to their nature they have some limitations in using specific commands.

Motion Commands: Using any motion commands in secondary program such as movej, movel and servoj
will not work. They will cause an error of "Runtime is too much behind". The motion commands depend on the
external factor (real robot motion) and are waiting for the result of the execution, which is not possible in
secondary programs.

Interpreter Mode: Sending new commands during runtime essentially goes against the design of secondary
programs. This will again give you the error of runtime too much behind.

Socket: Socket communication can be used within secondary programs, but this is limited to executing simple
non-blocking commands like single socket_send. Slow remote server or attempt to execute multiple socket
commands will cause "Runtime too much behind", or prevent controller from executing real-time tasks. Socket
commands should be avoided in secondary programs.

XMLRPC: Like socket, XMLRPC calls can be used in secondary programs although they need to be executed
very quickly by remote server. XMLRPC calls should be avoided in secondary programs.

Sleep: Sleep, similar to motion commands is a blocking call by nature. It requires multiple real-time cycles to
complete. Using Sleep will cause an error of "Runtime is too much behind"

Threads: Threads in secondary programs are not supported. Thread code execution is not guaranteed, and
leads to undefined behaviour.

PolyScope X 20 Script Directory

12. Secondary Programs

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

13. InterpreterMode
The interpreter mode enables the programmer to send and execute any valid script statement at runtime,
except declaration of new globals.

An internal interpreter thread is created at the start of execution of each primary program. The interpreter
socket(30020) accepts complete and valid UR-script statements when a program is running. When Interpreter
mode is active it compiles and links the received statements into the running program and executes them in
the scope of the interpreter thread. These statements become a part of the running program.

The scope of statements in the interpreter mode is inherited from the scope from which interpreter mode was
called. Be aware that declaring new global variables in interpreter mode is not supported.
When statements are sent at a faster rate than what the interpreter can handle, they are queued in an internal
buffer before they can be appended to the running program.

When the last statement received is executed, the interpreter thread will be idle until new statements are
received.

Interpreter mode can be stopped by calling end_interpreter() over the interpreter mode socket, or by
calling it from a thread in the main program. Interpreter mode also stops when the program is stopped.

Each statement should be sent in a single line, so the following statement:

def myFun():
mystring = "Hello Interpreter"
textmsg(mystring)

end

Should be formatted like below:
def myFun(): mystring = "Hello Interpreter" textmsg(mystring) end

With a newline character to end the statement. Multiple statements can be sent on a single line, and will only
be accepted if all can be compiled.

13.1. InterpreterMode replies
Received valid commands and statements are always acknowledge with a reply on the socket in form of:
ack: <id>: <statements>
Where <id> is a consecutively unique id for the received <statement>.

If a program is not running or the statement results in a compilation or linker error, the interpreter will reply with
a discard message:
discard: <reason>: <statement>.

Note: There exists an upper limit to the size of the interpreted statements per interpreter mode. To avoid
reaching that limit clear_interpreter() can be called to clear up everything interpreted into the current
interpreter mode.

Important: It is important to remember that every time a statement is interpreted the size and the complexity of
the program will grow if interpreter mode is not cleared either on exit or with clear_interpreter(). Too
large programs should be avoided.

13.2. Entering InterpreterMode
interpreter_mode(clearQueueOnEnter = True, clearOnEnd = True)

Script Directory 21 PolyScope X

13. Interpreter Mode

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

This is a blocking function that puts the controller in interpreter mode.

This function can only be called in the main thread, and nested interpreter modes are not supported. This
means that one can’t send an interpreter_mode() call to the interpreter socket.

Parameters

clearQueueOnEnter: If True queued statements will be cleared before interpreter mode is started.

It is possible to send statements to the interpreter socket before interpreter mode is run. These are put into
a queue, which by default is cleared when interpreter_mode() is called. However, setting the
clearQueueOnEnter argument to False will cause interpreter mode to start executing the statements
already in the queue when entering interpreter mode.

clearOnEnd: If True interpreted statements will be cleared when end_interpreter() is called.

Interpreted statements become part of the running program in the scope from which interpreter_mode
() was called, but are by default removed from the program again when end_interpreter() is called.
However, when entering interpreter mode it is possible to choose to have a persistent behavior by calling
interpreter_mode(clearOnEnd = False). The interpreted statements will in that case be a part of
the program until the end of program execution, thus they can be called/accessed in subsequent calls to
interpreter_mode().

Example statement:

• interpreter_mode()

• Starts interpreter mode with default behavior.

• interpreter_mode(clearQueueOnEnter = False)

• Starts interpreter mode by interpreting and executing the statements already in the
interpreter queue.

Important: It is the programmers responsibility to implement the synchronization necessary to ensure that
the program is in the wanted interpreter mode, and that it is ready to receive the statements. It is
insufficient to detect if interpreter mode is running, as multiple interpreter mode can exist in the same
program.

13.3. End InterpreterMode
end_interpreter()

Ends the interpreter mode, and causes the interpreter_mode() function to return. This function can
be compiled into the program by sending it to the interpreter socket(30020) as any other statement, or can
be called from anywhere else in the program.

By default everything interpreted will be cleared when ending, though the state of the robot, the
modifications to local variables from the enclosing scope, and the global variables will remain affected by
any changes made. The interpreter thread will be idle after this call.

13.4. Clear InterpreterMode
clear_interpreter()

PolyScope X 22 Script Directory

13. Interpreter Mode

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

Clears all interpreted statements, objects, functions, threads, etc. generated in the current interpreter
mode. Threads started in current interpreter session will be stopped, and deleted. Variables defined
outside of the current interpreter mode will not be affected by a call to this function.

Only statements interpreted before the clear_interpreter() function will be cleared. Statements
sent after clear_interpreter() will be queued. When cleaning is done, any statements queued are
interpreted and responded to. Note that commands such as abort, skipbuffer and state commands are
executed as soon as they are received.

Note: This function can only be called from an interpreter mode.

Tip: To expedite the clean, skipbuffer can be sent right before clear_interpreter().

13.5. AbortingCurrent Function
abort

The interpreter mode offers a mechanism to abort limited number of script functions, even if they are
called from the main program. Currently only movej and movel can be aborted.

Aborting a movement will result in a controlled stop if no blend radius is defined.

If a blend radius is defined then a blend with the next movement will be initiated right away if not already in
an initial blend, otherwise the command is ignored.

Return value should be ignored

Note: abortmust be sent in a line by itself, and thus cannot be combined with other commands or
statements.

13.6. Skip Non Executed Statements
skipbuffer

The interpreter mode furthermore supports the opportunity to skip already sent but not executed
statements. The interpreter thread will then (after finishing the currently executing statement) skip all
received but not executed statements.

After the skip, the interpreter thread will idle until new statements are received. skipbuffer will only skip
already received statements, new statements can therefore be send right away.

Return value should be ignored

Note: skipbuffermust be sent in a line by itself, and thus cannot be combined with other commands or
statements.

13.7. State Commands for InterpreterMode
The state commands that can be used to get a status from interpreter mode are listed here. When the state
commands below responds with an id, it is the id given in the ackownlegde message at the time the statement
was recevied by the interpreter.

Script Directory 23 PolyScope X

13. Interpreter Mode

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

Note that these ids start at 1 and might wrap around to 1 in very long running programs. A 0 represents an
uninitialized or undefined value, such as the last executed statement if none has been executed yet.

statelastexecuted

Replies with the largest id of a statement that has started being executed.

state: <id>: statelastexecuted

statelastinterpreted

Replies with the latest interpreted id, i.e. the highest number of interpreted statement so far.

state: <id>: statelastinterpreted

statelastcleared

Replies with the id for the latest statement to be cleared from the interpreter mode. This clear can happen
when ending interpreter mode, or by calls to clear_interpreter()

state: <id>: statelastcleared

stateunexecuted

Replies with the number of non executed statements, i.e. the number of statements that would have be
skipped if skipbuffer was called instead.

state: <#unexecuted>: stateunexecuted

13.8. Interpretermode log files
Statements acknowledged by the interpreter mode are logged to the file
/tmp/log/urcontrol/interpreter.log. The file contains basic information on when the log was
started, and for each statement a line:

e: <id_e> c: <id_a> : <statement>

Where <id_e> is the last statement for which execution has started when the statement <statement> with id
<id_a> was compiled into the program. To avoid filling the memory of the robot, the logfile is cleaned up
according to the following rules:

1. If the interpreter mode was entered with the parameter clearOnEnd=False, all statements in the
interpreter mode are appended to the file /tmp/log/urcontrol/interpreter.saved.log when
end_interpreter() is called.

2. Any other call to end_interpreter() or clear_interpreter() will cause the log to be moved to
/tmp/log/urcontrol/interpreter.0.log overwriting any data previously stored there.

All interpreter mode log files are included in failure report files.

PolyScope X 24 Script Directory

13. Interpreter Mode

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

14. Motion Version
The motion version setting influences how motions are planned and executed when using the 15.25 movel
(pose, a=1.2, v=0.25, t=0, r=0) on page 38 or 15.24 movej(q, a=1.4, v=1.05, t=0, r =0) on page 37 URScript
functions.

The optimovej() and optimovel() URScript functions are not influenced by this setting.

Motion version "1" enables the same motion behavior used up to PolyScope 5.21, while motion version "2"
applies the following changes relative to motion version "1":

• Modify acceleration ramps to reduce robot and equipment vibrations. This might slightly influence the
timing of a motion, but not the path the robot moves along.

• Clamp velocity and acceleration values to the hardware limits of the robot during motion planning,
leading to less dynamic speed scaling.

• Improve blending, which might lead to slightly different blend paths and timings.

• Dynamically reduce blend radii to prevent blend radius overlaps and waypoint skipping.

It is recommended to use motion version "2".

14.1. Modifying themotion version
The motion version can be set and read via the 15.22 motion_version_set(version) on page 35 and 15.21
motion_version_get() on page 35 URScript functions. However, it is generally recommended to set the desired
behavior in the PolyScope Installation tab and let PolyScope set the motion version based on these settings in
the script preamble.

A set motion version persist until the system is restarted or a new program is run via the PolyScope GUI (in
which case the installation settings will be applied on program start).

In rare cases, it might be required to enforce a certain motion setting for a particular motion, e.g. in URCaps,
without modifying other program motions.

For this usecase, the motion version should be modified locally and reset afterwards:

motion_version = motion_version_get() # save state

motion_version_set(2)

ensure
improved
motion
behavior

movel(...
critical
motion

motion_version_set(motion_version) # restore state

14.2. Availablity
The motion version script API is accessible starting with PolyScope 5.22. On some platforms, motion version
"1" is not available, details can be found in the table below.

When trying to set a motion version that is unavailable, PolyScope will ignore the setting and log a warning.

Script Directory 25 PolyScope X

14. Motion Version

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

PolyScope Version Robot
Available Motion
Versions

PolyScope 5.22 and above eSeries, UR20, UR30 1, 2

PolyScopeX 10.9 and above Any 2

Any UR15 and newer 2

PolyScope X 26 Script Directory

14. Motion Version

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

15. Modulemotion
This module contains functions and variables built into the URScript programming language.

URScript programs are executed in real-time in the URControl RuntimeMachine (RTMa- chine). The
RuntimeMachine communicates with the robot with a frequency of 500hz.

Robot trajectories are generated online by calling the move functions movej, movel and the speed
functions speedj, speedl.

Joint positions (q) and joint speeds (qd) are represented directly as lists of 6 Floats, one for each robot joint.
Tool poses (x) are represented as poses also consisting of 6 Floats. In a pose, the first 3 coordinates is a
position vector and the last 3 an axis-angle (http://en.wikipedia.org/wiki/Axis_angle).

15.1. conveyor_pulse_decode(type, A, B)

Deprecated: Tells the robot controller to treat digital inputs number A and B as pulses for a conveyor
encoder. Only digital input 0, 1, 2 or 3 can be used.

Parameters

type:

An integer determining how to treat the inputs on A and B

0 is no encoder, pulse decoding is disabled.

1 is quadrature encoder, input A and B must be square waves with 90 degree offset. Direction of the
conveyor can be determined.

2 is rising and falling edge on single input (A).

3 is rising edge on single input (A).

4 is falling edge on single input (A).

The controller can decode inputs at up to 40kHz

A:

Encoder input A, values of 0-3 are the digital inputs 0-3.

B:

Encoder input B, values of 0-3 are the digital inputs 0-3.

Deprecated: This function is replaced by encoder_enable_pulse_decode and it should therefore not
be used moving forward.

>>> conveyor_pulse_decode(1,0,1)

This example shows how to set up quadrature pulse decoding with input A = digital_in[0] and input B =
digital_in[1]

>>> conveyor_pulse_decode(2,3)

This example shows how to set up rising and falling edge pulse decoding with input A = digital_in[3]. Note
that you do not have to set parameter B (as it is not used anyway).

Example command: conveyor_pulse_decode(1, 2, 3)

Script Directory 27 PolyScope X

15. Module motion

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

http://en.wikipedia.org/wiki/Axis_angle

• Example Parameters:

• type = 1→ is quadrature encoder, input A and B must be square waves with 90 degree
offset. Direction of the conveyor can be determined.

• A = 2→ Encoder output A is connected to digital input 2

• B = 3→ Encoder output B is connected to digital input 3

15.2. encoder_enable_pulse_decode(encoder_index,
decoder_type, A, B)

Sets up an encoder hooked up to the pulse decoder of the controller.

>>> encoder_enable_pulse_decode(0,0,1,8,9)

This example shows how to set up encoder 0 for decoding a quadrature signal connected to pin 8 and 9.

Parameters

encoder_index: Index of the encoder to define. Must be either 0 or 1.

decoder_type:

An integer determining how to treat the inputs on A and B.

0 is no encoder, pulse decoding is disabled.

1 is quadrature encoder, input A and B must be square waves with 90 degree offset. Direction of the
conveyor can be determined.

2 is rising and falling edge on single input (A).

3 is rising edge on single input (A). 4 is falling edge on single input (A).

The controller can decode inputs at up to 40kHz

A:

Encoder input A pin. Must be 8-11.

B:

Encoder input B pin. Must be 8-11.

15.3. encoder_enable_set_tick_count(encoder_index,
range_id)

Sets up an encoder expecting to be updated with tick counts via the function encoder_set_tick_
count.

>>> encoder_enable_set_tick_count(0,0)

This example shows how to set up encoder 0 to expect counts in the range of [-2147483648 ;
2147483647].

Parameters

PolyScope X 28 Script Directory

15. Module motion

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

encoder_index:

Index of the encoder to define. Must be either 0 or 1.

range_id:

decoder_index: Range of the encoder

(integer). Needed to handle wrapping nicely.

0 is a 32 bit signed encoder, range [-2147483648 ; 2147483647]

1 is a 8 bit unsigned encoder, range [0 ; 255]

2 is a 16 bit unsigned encoder, range [0 ; 65535]

3 is a 24 bit unsigned encoder, range [0 ; 16777215]

4 is a 32 bit unsigned encoder, range [0 ; 4294967295]

15.4. encoder_get_tick_count(encoder_index, opt="")

Returns the filtered tick count of the designated encoder.

>>> encoder_get_tick_count(0)

This example returns the current filtered tick count of encoder 0.

Parameters

encoder_index: Index of the encoder to query. Must be either 0 or 1.

opt:Optional option parameter. Default is opt="". Get the raw unfiltered integer value by opt="raw".

Return Value

The filtered conveyor encoder tick count (float) or the raw value (int32)

Example command 1: encoder_get_tick_count(0)

This example returns the current filtered tick count of encoder 0.
Use caution when subtracting encoder tick counts as it wraps around when reaching the maximum count
value. The range of the filtered encoder value is [0; 65536[.
Please see the function encoder_unwind_delta_tick_count.

Example command 2: encoder_get_tick_count(1, opt="raw")

This example returns the current raw tick count of encoder 1.
Use caution when subtracting encoder tick counts.
The range of the raw encoder value is [-2³¹, 2³¹[.

15.5. encoder_set_tick_count(encoder_index, count)

Tells the robot controller the tick count of the encoder. This function is useful for absolute encoders (e.g.
MODBUS).

>>> encoder_set_tick_count(0, 1234)

Script Directory 29 PolyScope X

15. Module motion

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

This example sets the tick count of encoder 0 to 1234. Assumes that the encoder is enabled using
encoder_enable_set_tick_count first.

Parameters

encoder_index: Index of the encoder to define. Must be either 0 or 1.

count: The tick count to set. Must be within the range of the encoder.

15.6. encoder_unwind_delta_tick_count(encoder_index,
delta_tick_count)

Returns the delta_tick_count. Unwinds in case encoder wraps around the range. If no wrapping has
happened the given delta_tick_count is returned without any modification.

Consider the following situation: You are using an encoder with a UINT16 range, meaning the tick count is
always in the [0; 65536[range. When the encoder is ticking, it may cross either end of the range, which
causes the tick count to wrap around to the other end. During your program, the current tick count is
assigned to a variable (start:=encoder_get_tick_count(...)). Later, the tick count is assigned to another
variable (current:=encoder_get_tick_count(...)). To calculate the distance the conveyor has traveled
between the two sample points, the two tick counts are subtracted from each other.

For example, the first sample point is near the end of the range (e.g., start:=65530). When the conveyor
arrives at the second point, the encoder may have crossed the end of its range, wrapped around, and
reached a value near the beginning of the range (e.g., current:=864). Subtracting the two samples to
calculate the motion of the conveyor is not robust, and may result in an incorrect result

(delta=current-start=-64666).

Conveyor tracking applications rely on these kinds of encoder calculations. Unless special care is taken to
compensate the encoder wrapping around, the application will not be robust and may produce weird
behaviors (e.g., singularities or exceeded speed limits) which are difficult to explain and to reproduce.

This heuristic function checks that a given delta_tick_count value is reasonable. If the encoder wrapped
around the end of the range, it compensates (i.e., unwinds) and returns the adjusted result. If a delta_tick_
count is larger than half the range of the encoder, wrapping is assumed and is compensated. As a
consequence, this function only works when the range of the encoder is explicitly known, and therefore the
designated encoder must be enabled. If not, this function will always return nil.

Parameters

encoder_index: Index of the encoder to query. Must be either 0 or 1.

delta_tick_count: The delta (difference between two) tick count to unwind (float)

Return Value

The unwound delta_tick_count (float)

15.7. end_force_mode()

Resets the robot mode from force mode to normal operation.

PolyScope X 30 Script Directory

15. Module motion

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

This is also done when a program stops.

15.8. end_freedrive_mode()

Set robot back in normal position control mode after freedrive mode.

15.9. end_screw_driving()

Exit screw driving mode and return to normal operation.

15.10. end_teach_mode()

Deprecated:

Set robot back in normal position control mode after teach mode.

This function is replaced by end_freedrive_mode and it should therefore not be used moving forward.

15.11. force_mode(task_frame, selection_vector, wrench,
type, limits)

Set robot to be controlled in force mode

Parameters

task_frame: A pose vector that defines the force frame relative to the base frame.

selection_vector: A 6d vector of 0s and 1s. 1 means that the robot will be compliant in the
corresponding axis of the task frame.

wrench: The forces/torques the robot will apply to its environment. The robot adjusts its position
along/about compliant axis in order to achieve the specified force/torque. Values have no effect for non-
compliant axes.

Actual wrench applied may be lower than requested due to joint safety limits. Actual forces and torques
can be read using get_tcp_force function in a separate thread.

type:

An integer [1;3] specifying how the robot interprets the force frame.

1: The force frame is transformed in a way such that its y-axis is aligned with a vector pointing from the
robot tcp towards the origin of the force frame.

2: The force frame is not transformed.

Script Directory 31 PolyScope X

15. Module motion

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

3: The force frame is transformed in a way such that its x-axis is the projection of the robot tcp velocity
vector onto the x-y plane of the force frame.

limits: (Float) 6d vector. For compliant axes, these values are the maximum allowed tcp speed
along/about the axis. For non-compliant axes, these values are the maximum allowed deviation
along/about an axis between the actual tcp position and the one set by the program.

Note: Avoid movements parallel to compliant axes and high deceleration (consider inserting a short sleep
command of at least 0.02s) just before entering force mode. Avoid high acceleration in force mode as this
decreases the force control accuracy.

15.12. force_mode_example()

This is an example of the above force_mode() function

Example command: force_mode(p[0.1,0,0,0,0.785], [1,0,0,0,0,0],
[20,0,40,0,0,0], 2, [.2,.1,.1,.785,.785,1.57])

Example Parameters:

• Task frame = p[0.1,0,0,0,0.785] ! This frame is offset from the base frame 100 mm in the x direction
and rotated 45 degrees

• in the rz direction

• Selection Vector = [1,0,0,0,0,0] ! The robot is compliant in the x direction of the Task frame above.

• Wrench = [20,0,40,0,0,0] ! The robot apples 20N in the x direction. It also accounts for a 40N
external force in the z direction.

• Type = 2 ! The force frame is not transformed.

• Limits = [.1,.1,.1,.785,.785,1.57] ! max x velocity is 100 mm/s, max y deviation is 100 mm, max z
deviation is 100 mm, max rx deviation is 45 deg, max ry deviation is 45 deg, max rz deviation is 90
deg.

15.13. force_mode_set_damping(damping)

Sets the damping parameter in force mode.

Parameters

damping:

Between 0 and 1, default value is 0.005

A value of 1 is full damping, so the robot will decelerate quickly if no force is present. A value of 0 is no
damping, here the robot will maintain the speed.

The value is stored until this function is called again. Add this to the beginning of your program to ensure it
is called before force mode is entered (otherwise default value will be used).

PolyScope X 32 Script Directory

15. Module motion

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

15.14. force_mode_set_gain_scaling(scaling)

Scales the gain in force mode.

Parameters

scaling:

scaling parameter between 0 and 2, default is 1.

A value larger than 1 can make force mode unstable, e.g. in case of collisions or pushing against hard
surfaces.

The value is stored until this function is called again. Add this to the beginning of your program to ensure it
is called before force mode is entered (otherwise default value will be used).

15.15. freedrive_mode (freeAxes=[1, 1, 1, 1, 1, 1], feature=p
[0, 0, 0, 0, 0, 0])

Set robot in freedrive mode. In this mode the robot can be moved around by hand in the same way as by
pressing the "freedrive" button.

The robot will not be able to follow a trajectory (eg. a movej) in this mode.

The default parameters enables the robot to move freely in all directions. It is possible to enable
Constrained Freedrive by providing user specific parameters.

Parameters

freeAxes: A 6 dimensional vector that contains 0’s and 1’s, these indicates in which axes movement is
allowed. The first three values represents the cartesian directions along x, y, z, and the last three defines
the rotation axis, rx, ry, rz. All relative to the selected feature.

feature: A pose vector that defines a freedrive frame relative to the base frame. For base and tool
reference frames predefined constants "base", and "tool" can be used in place of pose vectors.

Example commands:

• freedrive_mode()

• Robot can move freely in all directions.

• freedrive_mode(freeAxes=[1,0,0,0,0,0], feature=p[0.1,0,0,0,0.785])

• Example Parameters:

• freeAxes = [1,0,0,0,0,0] -> The robot is compliant in the x direction relative to
the feature.

• feature = p[0.1,0,0,0,0.785] -> This feature is offset from the base frame with
100 mm in the x direction and rotated 45 degrees in the rz direction.

• freedrive_mode(freeAxes=[0,1,0,0,0,0], feature="tool")

Script Directory 33 PolyScope X

15. Module motion

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

• Example Parameters:

• freeAxes = [0,1,0,0,0,0] -> The robot is compliant in the y direction relative to
the "tool" feature.

• feature = "tool" -> The "tool" feature is located in the active TCP.

Note: Immediately before entering freedrive mode, avoid:

• movements in the non-compliant axes

• high acceleration in freedrive mode

• high deceleration in freedrive mode

High acceleration and deceleration can both decrease the control accuracy and cause protective stops.

15.16. freedrive_mode_no_incorrect_payload_check()

This method, like teach_mode() and freedrive_mode(), changes the robot mode to teach mode, but this
function does not check for an incorrect payload during the initial state change, nor if the payload is
updated during freedrive. For this reason, it is exceedingly important for users to be certain the payload is
correct.

It is possible for the user to exit teach mode/freedrive in the usual manner, using: end_teach_mode() or
end_freedrive_mode()

15.17. get_conveyor_tick_count()

Deprecated:Tells the tick count of the encoder, note that the controller interpolates tick counts to get more
accurate movements with low resolution encoders

Return Value

The conveyor encoder tick count

Deprecated: This function is replaced by encoder_get_tick_count and it should therefore not be
used moving forward.

15.18. get_freedrive_status()

Returns status of freedrive mode for current robot pose.

Constrained freedrive usability is reduced near singularities. Value returned by this function corresponds
to distance to the nearest singularity.

It can be used to advice operator to follow different path or switch to unconstrained freedrive.

Return Value

PolyScope X 34 Script Directory

15. Module motion

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

• 0 - Normal operation.

• 1 - Near singularity.

• 2 - Too close to singularity. High movement resistance in freedrive.

15.19. get_target_tcp_pose_along_path()

Query the target TCP pose as given by the trajectory being followed.

This script function is useful in conjunction with conveyor tracking to know what the target pose of the TCP
would be if no offset was applied.

Return Value

Target TCP pose

15.20. get_target_tcp_speed_along_path()

Query the target TCP speed as given by the trajectory being followed.

This script function is useful in conjunction with conveyor tracking to know what the target speed of the
TCP would be if no offset was applied.

Return Value

Target TCP speed as a vector

15.21. motion_version_get()
Get the active 14 Motion Version on page 25 for movej and movel.

This function allows URCaps and imported URScript to store the active motion version with the intent of setting
it back at a later time. They are then free to perform motions with a specific version, without risking affecting
the rest of a program.

Return Value

Integer indicating the active version.

see motion_version_set() for details.

15.22.motion_version_set(version)

Set which 14 Motion Version on page 25 will be used for movej and movel motion planning.

This command overrides the PolyScope GUI "Installation →Motion →Motion Version → Smooth Motion"
setting.

Parameters:

Script Directory 35 PolyScope X

15. Module motion

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

version: 1 or 2. See 14 Motion Version on page 25 for details.

Example command: motion_version_set(2)

• Example Parameters:

version = 2→movej and movel perform as motion version 2

NOTICE

Motion version 1 has identical motion profiles to prior versions of PolyScope

NOTICE

New robot models as well as PolyScopeX only support motion version 2

15.23.movec(pose_via, pose_to, a=1.2, v=0.25, r =0,
mode=0)

Move Circular: Move to position (circular in tool-space)

TCP moves on the circular arc segment from current pose, through pose_via to pose_to. Accelerates to
and moves with constant tool speed v. Use the mode parameter to define the orientation interpolation.

Parameters

pose_via: path point (note: only position is used). Pose_via can also be specified as joint positions, then
forward kinematics is used to calculate the corresponding pose.

pose_to: target pose (note: only position is used in Fixed orientation mode). Pose_to can also be
specified as joint positions, then forward kinematics is used to calculate the corresponding pose.

a: tool acceleration [m/s^2]

v: tool speed [m/s]

r: blend radius (of target pose) [m]

mode:

0: Unconstrained mode. Interpolate orientation from current pose to target pose (pose_to)

1: Fixed mode. Keep orientation constant relative to the tangent of the circular arc (starting from current
pose)

Example command: movec(p[x,y,z,0,0,0], pose_to, a=1.2, v=0.25, r=0.05, mode=1)

• Example Parameters:

• Note: first position on circle is previous waypoint.

• pose_via = p[x,y,z,0,0,0] → second position on circle.

• Note: Rotations are not used so they can be left as zeros.

• Note: This position can also be represented as joint angles [j0,j1,j2,j3,j4,j5] then
forward kinematics is used to calculate the corresponding pose

PolyScope X 36 Script Directory

15. Module motion

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

• pose_to → third (and final) position on circle

• a = 1.2 → acceleration is 1.2 m/s/s

• v = 0.25 → velocity is 250 mm/s

• r = 0 → blend radius (at pose_to) is 50 mm.

• mode = 1 → use fixed orientation relative to tangent of circular arc

15.24.movej(q, a=1.4, v=1.05, t=0, r =0)

Move to position (linear in joint-space)

The motion trajectory is influenced by the 14 Motion Version on page 25.

When using this command, the robot must be at a standstill or come from a movej or movel with a blend.
The speed and acceleration parameters control the trapezoid speed profile of the move. Alternatively, the t
parameter can be used to set the time for this move. Time setting has priority over speed and acceleration
settings.

Parameters

q: joint positions (q can also be specified as a pose, then inverse kinematics is used to calculate the
corresponding joint positions)

a: joint acceleration of leading axis [rad/s^2]

v: joint speed of leading axis [rad/s]

t: time [S]

r: blend radius [m]

If a blend radius is set, the robot arm trajectory will be modified to avoid the robot stopping at the point.

For Motion Version 1, if the blend region of this move overlaps with the blend radius of previous or
following waypoints, this move will be skipped, and an ’Overlapping Blends’ warning message will be
generated.

Example command: movej([0,1.57,-1.57,3.14,-1.57,1.57], a=1.4, v=1.05, t=0,
r=0)

• Example Parameters:

• q = [0,1.57,-1.57,3.14,-1.57,1.57] base is at 0 deg rotation, shoulder is at 90 deg rotation,
elbow is at -90 deg rotation, wrist 1 is at 180 deg rotation, wrist 2 is at -90 deg rotation, wrist
3 is at 90 deg rotation. Note: joint positions (q can also be specified as a pose, then inverse
kinematics is used to calculate the corresponding joint positions)

• a = 1.4 → acceleration is 1.4 rad/s/s

• v = 1.05 → velocity is 1.05 rad/s

• t = 0 the time (seconds) to make move is not specified. If it were specified the command
would ignore the a and v values.

• r = 0 → the blend radius is zero meters.

Script Directory 37 PolyScope X

15. Module motion

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

15.25.movel(pose, a=1.2, v=0.25, t=0, r=0)

Move to position (linear in tool-space)

The motion trajectory is influenced by the 14 Motion Version on page 25.

See movej.

Parameters

pose: target pose (pose can also be specified as joint positions, then forward kinematics is used to
calculate the corresponding pose)

a: tool acceleration [m/s^2]

v: tool speed [m/s]

t: time [S]

r: blend radius [m]

Example command: movel(pose, a=1.2, v=0.25, t=0, r=0)

• Example Parameters:

• pose = p[0.2,0.3,0.5,0,0,3.14] -> position in base frame of x = 200 mm, y = 300 mm, z = 500
mm, rx = 0, ry = 0, rz = 180 deg

• a = 1.2 -> acceleration of 1.2 m/s^2

• v = 0.25 -> velocity of 250 mm/s

• t = 0 -> the time (seconds) to make the move is not specified.

• If it were specified the command would ignore the a and v values.

• r = 0 -> the blend radius is zero meters.

15.26.movep(pose, a=1.2, v=0.25, r=0)

Move Process

Blend circular (in tool-space) and move linear (in tool-space) to position. Accelerates to and moves with
constant tool speed v.

Parameters

pose: target pose (pose can also be specified as joint positions, then forward kinematics is used to
calculate the corresponding pose)

a: tool acceleration [m/s^2]

v: tool speed [m/s]

r: blend radius [m]

Example command: movep(pose, a=1.2, v=0.25, r=0)

PolyScope X 38 Script Directory

15. Module motion

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

• Example Parameters:

• pose = p[0.2,0.3,0.5,0,0,3.14] -> position in base frame of x = 200 mm, y = 300 mm, z = 500
mm, rx = 0, ry = 0, rz = 180 deg.

• a = 1.2 -> acceleration of 1.2 m/s^2

• v = 0.25 -> velocity of 250 mm/s

• r = 0 -> the blend radius is zero meters.

15.27. optimovej(goal, a=0.3, v=0.3, r=0)

Move to the goal position (linear in joint-space)

OptiMove dynamically adapts speed and acceleration to perform smooth motions using jerk-limited speed
profiles. The speed and acceleration parameters control the speed profile of the move. Setting speed and
acceleration parameters to 1 causes the fastest cycle time the robot is capable of. This command is similar
to movej() but with smoother motions with less vibration.

Parameters

goal: (q, pose, struct{pose, frame}, string) - the target for the TCP motion can be defined in
different ways:

• (q) as robot joint positions.

• (pose) as a pose in robot base coordinate frame. The target joint positions will be calculated by
inverse kinematics.

• (struct{pose, frame}) as a pose and the name of a reference coordinate frame. The goal will be set
to this pose in this reference coordinate frame.

• (string) as the name of a world model object. The goal will be set to the object's pose.

a (optional): Joint acceleration as a fraction of what the joints are able to perform - a∈ (0.0,1.0]

v (optional): Joint speed as a fraction of how fast the joints can move during the motion - v∈ (0.0,1.0]

r (optional): Blend radius [m]

If a blend radius is set, the robot arm trajectory will be modified within the blend radius of the destination
position.

Example command: optimovej([0, 1.57, -1.57, 3.14, -1.57, 1.57], a=0.4, v=0.6,
r=0.0)

• Example Parameters:

• goal = [0, 1.57, -1.57, 3.14, -1.57, 1.57] → joint positions with base at 0 deg rotation,
shoulder at 90 deg rotation, elbow at -90 deg rotation, wrist 1 at 180 deg rotation, wrist 2 at -
90 deg rotation, wrist 3 at 90 deg rotation.

• a = 0.4 → acceleration at either end of the motion is 40% of the acceleration the robot is
capable of producing in the specific joint configuration.

• v = 0.6 → velocity during motion cruise phase is 60% of the velocity the joints can move at.

• r = 0.0 → the blend radius is zero meters, meaning the robot will stop at the waypoint.

Notes:

Script Directory 39 PolyScope X

15. Module motion

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

• The absolute speed and acceleration of the robot depends on the joint configuration during the
move. A value of e.g. 0.4 might therefore produce a faster speed/acceleration in one area of the
robot's workspace and a slower speed/acceleration in another area of the robot's workspace.
Values of 1.0 will always give the highest speed and acceleration that are possible for a given robot
path.

• To avoid high accelerations that can cause dropped items in e.g. suction cup grippers, consider
using the command tool_wrench_limit_set() to limit the acceleration of the items held by the
gripper.

• It is possible to blend into this move type from movej/l and optimovej/l. When coming from other
movement types the robot should be at standstill when starting the move.

15.28. optimovel(goal, a=0.3, v=0.3, r=0)

Move to the goal position (linear in Cartesian space).

OptiMove dynamically adapts speed and acceleration to perform smooth motions using jerk-limited speed
profiles. The speed and acceleration parameters control the speed profile of the move. Setting speed and
acceleration parameters to 1 causes the fastest cycle time the robot is capable of.

This command is similar to movel() but with smoother motions with less vibration.

Parameters

goal: (q, pose, struct{pose, frame}, string) target for the TCP motion can be defined in
different ways:

• (q) as robot joint positions. The target pose will be calculated by forward kinematics.

• (pose) as a pose in robot base coordinate frame. The target joint positions will be calculated by
inverse kinematics.

• (struct{pose, frame}) as a pose and the name of a reference coordinate frame. The goal will be set
to this pose in this reference coordinate frame.

• (string) as the name of a world model object. The goal will be set to the object's pose.

a (optional): Tool acceleration as a fraction of what the robot is able to perform - a∈ (0.0,1.0]

v (optional): Tool speed as a fraction of the maximum Cartesian velocity the robot can travel at during the
trajectory, given the maximum joint speeds - v∈ (0.0,1.0]

r (optional): Blend radius [m]

If a blend radius is set, the robot arm trajectory will be modified within the blend radius of the destination
position.

Example command: optimovel(pose, a=0.4, v=0.6, r=0.0)

• Example Parameters:

• goal = p[0.2, 0.3, 0.5, 0, 0, 3.14] -> position in base frame of x = 200 mm, y = 300 mm, z =500
mm, rx = 0 deg, ry = 0 deg, rz = 180 deg.

• a = 0.4 -> acceleration at either end of the motion is 40% of the acceleration the robot is

PolyScope X 40 Script Directory

15. Module motion

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

capable of producing in the specific joint configuration.

• v = 0.6 -> velocity during motion cruise phase is 60% of the velocity the joints can move at.

• r = 0.0 -> the blend radius is zero meters, meaning the robot will stop at the waypoint.

Notes:

• The absolute speed and acceleration of the robot depends on the joint configuration during the
move. A value of e.g. 0.4 might therefore produce a faster speed/acceleration in one area of the
robot's workspace and a slower speed/acceleration in another area of the robot's workspace
(typically close to singularities). Values of 1.0 will always give the highest speed and acceleration
that are possible for a given robot path.

• To avoid high accelerations that can cause dropped items in e.g. suction cup grippers, consider
using the command tool_wrench_limit_set() to limit the acceleration of the items held by the
gripper.

• It is possible to blend into this move type from movej/l and optimovej/l. When coming from other
movement types the robot should be at standstill when starting the move.

15.29. path_offset_disable(a=20)

Disable the path offsetting and decelerate all joints to zero speed.

Uses the stopj functionality to bring all joints to a rest. Therefore, all joints will decelerate at different
rates but reach stand-still at the same time.

Use the script function path_offset_enable to enable path offsetting

Parameters

a: joint acceleration [rad/s^2] (optional)

15.30. path_offset_enable()

Enable path offsetting.

Path offsetting is used to superimpose a Cartesian offset onto the robot motion as it follows a trajectory.
This is useful for instance for imposing a weaving motion onto a welding task, or to compensate for the
effect of moving the base of the robot while following a trajectory.

Path offsets can be applied in various frames of reference and in various ways. Please refer to the script
function path_offset_set for further explanation.

Enabling path offsetting doesn’t cancel the effects of previous calls to the script functions path_offset_
set_max_offset and path_offset_set_alpha_filter. Path offset configuration will persist
through cycles of enable and disable.

Using Path offset at the same time as Conveyor Tracking and/or Force can lead to program conflict. Do
not use this function togther with Conveyor Tracking and/or Force.

Script Directory 41 PolyScope X

15. Module motion

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

15.31. path_offset_get(type)

Query the offset currently applied.

Parameters

type: Specifies the frame of reference of the returned offset. Please refer to the path_offset_set
script function for a definition of the possible values and their meaning.

Return Value

Pose specifying the translational and rotational offset. Units are meters and radians.

15.32. path_offset_set(offset, type)

path_offset_set(offset, type)

Specify the Cartesian path offset to be applied.

Use the script function path_offset_enable beforehand to enable offsetting. The calculated offset is
applied during each cycle at 500Hz.

Discontinuous or jerky offsets are likely to cause protective stops. If offsets are not smooth the function
path_offset_set_alpha_filter can be used to engage a simple filter.

The following example uses a harmonic wave (cosine) to offset the position of the TCP along the Z-axis of
the robot base:

>>> thread OffsetThread():

>>> while(True):

>>> # 2Hz cosine wave with an amplitude of 5mm

>>> global x = 0.005*(cos(p) - 1)

>>> global p = p + 4*3.14159/500

>>> path_offset_set([0,0,x,0,0,0], 1)

>>> sync()

>>> end

>>> end

Parameters

offset: Pose specifying the translational and rotational offset.

type: Specifies how to apply the given offset. Options are:

1: (BASE) Use robot base coordinates when applying.

2: (TCP) Use robot TCP coordinates when applying.

3: (MOTION) Use a coordinate system following the un-offset trajectory when applying. This coordinate
system is defined as follows. X-axis along the tangent of the translational part of the un-offset trajectory

PolyScope X 42 Script Directory

15. Module motion

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

(rotation not relevant here). Y-axis perpendicular to the X-axis above and the Z-axis of the tool (X cross Z).
Z-axis given from the X and Y axes by observing the right-hand rule. This is useful for instance for
superimposing a weaving pattern onto the trajectory when welding.

4: (WORLD) This can be used to follow a trajectory in world (inertial) space, while the base coordinate
system of the robot is being translated and/or rotated by something external, e.g. a mobile robot or another
robot arm. The offset is thus the pose of the robot base relative to the world coordinate system, and it is
also the world coordinate system which the commanded trajectory should be understood relative to.

15.33. path_offset_set_alpha_filter(alpha)

Engage offset filtering using a simple alpha filter (EWMA) and set the filter coefficient.

When applying an offset, it must have a smooth velocity profile in order for the robot to be able to follow the
offset trajectory. This can potentially be cumbersome to obtain, not least as offset application starts,
unless filtering is applied.

The alpha filter is a very simple 1st order IIR filter using a weighted sum of the commanded offset and the
previously applied offset: filtered_offset= alpha*offset+ (1-alpha)*filtered_offset.

See more details and examples in the UR Support Site: Modify Robot Trajectory

Parameters

alpha: The filter coefficient to be used - must be between 0 and 1.
A value of 1 is equivalent to no filtering.

For welding; experiments have shown that a value around 0.1 is a good compromise between robustness
and offsetting accuracy.

The necessary alpha value will depend on robot calibration, robot mounting, payload mass, payload
center of gravity, TCP offset, robot position in workspace, path offset rate of change and underlying
motion.

15.34. path_offset_set_max_offset(transLimit, rotLimit)

Set limits for the maximum allowed offset.

Due to safety and due to the finite reach of the robot, path offsetting limits the magnitude of the offset to be
applied. Use this function to adjust these limits. Per default limits of 0.1 meters and 30 degrees (0.52
radians) are used.

Parameters

transLimit: The maximum allowed translational offset distance along any axis in meters.

rotLimit: The maximum allowed rotational offset around any axis in radians.

Script Directory 43 PolyScope X

15. Module motion

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

https://www.universal-robots.com/articles/ur/programming/modify-robot-trajectory-by-overlaying-custom-motion/

15.35. pause_on_error_code(code, argument)

Makes the robot pause if the specified error code occurs. The robot will only pause during program
execution.

This setting is reset when the program is stopped. Call the command again before/during program
execution to re-enable it.

>>> pause_on_error_code(173, 3)

In the above example, the robot will pause on errors with code 173 if its argument equals 3 (corresponding
to ’C173A3’ in the log).

>>> pause_on_error_code(173)

In the above example, the robot will pause on error code 173 for any argument value.

Parameters

code: The code of the error for which the robot should pause (int)

argument: The argument of the error. If this parameter is omitted the robot will pause on any argument
for the specified error code (int)

Notes:

• Error codes appear in the log as CxAy where 'x' is the code and 'y' is the argument.

15.36. position_deviation_warning(enabled,
threshold=0.8)

When enabled, this function generates warning messages to the log when the robot deviates from the
target position. This function can be called at any point in the execution of a program. It has no return
value.

>>> position_deviation_warning(True)

In the above example, the function has been enabled. This means that log messages will be generated
whenever a position deviation occurs. The optional "threshold" parameter can be used to specify the level
of position deviation that triggers a log message.

Parameters

enabled: (Boolean) Enable or disable position deviation log messages.

threshold: (Float) Optional value in the range [0;1], where 0 is no position deviation and 1 is the maximum
position deviation (equivalent to the amount of position deviation that causes a protective stop of the
robot). If no threshold is specified by the user, a default value of 0.8 is used.

Example command: position_deviation_warning(True, 0.8)

• Example Parameters:

• Enabled = True→ Logging of warning is turned on

• Threshold = 0.8 80% of deviation that causes a protective stop causes a warning to be
logged in the log history file.

PolyScope X 44 Script Directory

15. Module motion

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

15.37. reset_revolution_counter(qNear=[0.0, 0.0, 0.0,
0.0, 0.0, 0.0])

Reset the revolution counter, if no offset is specified. This is applied on joints which safety limits are set to
"Unlimited" and are only applied when new safety settings are applied with limitted joint angles.

>>> reset_revolution_counter()

Parameters

qNear:Optional parameter, reset the revolution counter to one close to the given qNear joint vector. If not
defined, the joint’s actual number of revolutions are used.

Example command: reset_revolution_counter(qNear=[0.0, 0.0, 0.0, 0.0, 0.0,
0.0])

• Example Parameters:

• qNear = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0] -> Optional parameter, resets the revolution counter of
wrist 3 to zero on UR3 robots to the nearest zero location to joint rotations represented by
qNear.

15.38. screw_driving(f, v_limit)

Enter screw driving mode. The robot will exert a force in the TCP Z-axis direction at limited speed. This
allows the robot to follow the screw during tightening/loosening operations.

Parameters

f: The amount of force the robot will exert along the TCP Z-axis (Newtons).

v_limit:Maximum TCP velocity along the Z axis (m/s).

Notes:

Zero the F/T sensor without the screw driver pushing against the screw.

Call end_screw_driving when the screw driving operation has completed.

>>> def testScrewDriver():

>>> # Zero F/T sensor

>>> zero_ftsensor()

>>> sleep(0.02)

>>>

>>> # Move the robot to the tightening position

>>> # (i.e. just before contact with the screw)

>>> ...

>>>

>>> # Start following the screw while tightening

>>> screw_driving(5.0, 0.1)

Script Directory 45 PolyScope X

15. Module motion

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

>>>

>>> # Wait until screw driver reports OK or NOK

>>> ...

>>>

>>> # Exit screw driving mode

>>> end_screw_driving()

>>> end

15.39. servoj(q, a, v, t=0.002, lookahead_time=0.1,
gain=300)

Servoj can be used for online realtime control of joint positions.

The gain parameter works the same way as the P-term of a PID controller, where it adjusts the current
position towards the desired (q). The higher the gain, the faster reaction the robot will have.

The parameter lookahead_time is used to project the current position forward in time with the current
velocity. A low value gives fast reaction, a high value prevents overshoot.

Note: A high gain or a short lookahead time may cause instability and vibrations. Especially if the target
positions are noisy or updated at a low frequency

It is preferred to call this function with a new setpoint (q) in each time step (thus the default t=0.002)

You can combine with the script command get_inverse_kin() to perform servoing based on cartesian
positions:

>>> q = get_inverse_kin(x)

>>> servoj(q, lookahead_time=0.05, gain=500)

Here x is a pose variable with target cartesian positions, received over a socket or RTDE registers.

Example command: servoj([0.0,1.57,-1.57,0,0,3.14], 0, 0, 0.002, 0.1, 300)

• Example Parameters:

• q = [0.0,1.57,-1.57,0,0,3.14] joint angles in radians representing rotations of base,
shoulder, elbow, wrist1, wrist2 and wrist3

• a = 0→ not used in current version

• v = 0→ not used in current version

• t = 0.002 time where the command is controlling the robot. The function is blocking for time
t [S].

• lookahead time = .1 time [S], range [0.03,0.2] smoothens the trajectory with this lookahead
time

• gain = 300 proportional gain for following target position, range [100,2000]

PolyScope X 46 Script Directory

15. Module motion

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

15.40. set_conveyor_tick_count(tick_count, absolute_
encoder_resolution=0)

Deprecated:Tells the robot controller the tick count of the encoder. This function is useful for absolute
encoders, use conveyor_pulse_decode() for setting up an incremental encoder. For circular conveyors,
the value must be between 0 and the number of ticks per revolution.

Parameters

tick_count:

Tick count of the conveyor (Integer)

absolute_encoder_resolution:

Resolution of the encoder, needed to handle wrapping nicely. (Integer)

0 is a 32 bit signed encoder, range [-2147483648 ; 2147483647] (default)

1 is a 8 bit unsigned encoder, range [0 ; 255]

2 is a 16 bit unsigned encoder, range [0 ; 65535]

3 is a 24 bit unsigned encoder, range [0 ; 16777215]

4 is a 32 bit unsigned encoder, range [0 ; 4294967295]

Deprecated: This function is replaced by encoder_set_tick_count and it should therefore not be used
moving forward.

Example command: set_conveyor_tick_count(24543, 0)

• Example Parameters:

• Tick_count = 24543 a value read from e.g. a MODBUS register being updated by the
absolute encoder

• Absolute_encoder_resolution = 0 0 is a 32 bit signed encoder, range [-2147483648
;2147483647] (default)

15.41. set_pos(q)

Set joint positions of simulated robot

Parameters

q: joint positions

Example command: set_pos([0.0,1.57,-1.57,0,0,3.14])

• Example Parameters:

• q = [0.0,1.57,-1.57,0,0,3.14] -> the position of the simulated robot with joint angles in radians
representing rotations of base, shoulder, elbow, wrist1, wrist2 and wrist3

Script Directory 47 PolyScope X

15. Module motion

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

15.42. set_safety_mode_transition_hardness(type)

Sets the transition hardness between normal mode, reduced mode and safeguard stop.

Parameters

type:

An integer specifying transition hardness.

0 is hard transition between modes using maximum torque, similar to emergency stop.

1 is soft transition between modes.

15.43. speedj(qd, a, t)

Joint speed

Accelerate linearly in joint space and continue with constant joint speed. The time t is optional; if provided
the function will return after time t, regardless of the target speed has been reached. If the time t is not
provided, the function will return when the target speed is reached.

Parameters

qd: joint speeds [rad/s]

a: joint acceleration [rad/s^2] (of leading axis)

t: time [s] before the function returns (optional)

Example command: speedj([0.2,0.3,0.1,0.05,0,0], 0.5, 0.5)

• Example Parameters:

• qd -> Joint speeds of: base=0.2 rad/s, shoulder=0.3 rad/s, elbow=0.1 rad/s, wrist1=0.05
rad/s, wrist2 and wrist3=0 rad/s

• a = 0.5 rad/s^2 -> acceleration of the leading axis (shoulder in this case)

• t = 0.5 s -> time before the function returns

15.44. speedl(xd, a, t, aRot=’a’)

Cartecian velocity control

Accelerate linearly in Cartesian space and continue with constant tool speed. The time t is optional; if
provided the function will return after time t, regardless of the target speed has been reached. If the time t
is not provided, the function will return when the target speed is reached.

Parameters

xd: tool speed [m/s] (spatial vector)

a: tool positional acceleration [m/s^2]

t: time [s] before function returns (optional)

PolyScope X 48 Script Directory

15. Module motion

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

aRot: tool rotational acceleration [rad/s^2] (optional). If not defined, position acceleration value in
[rad/s^2] will be used

Example command: speedl([0.5,0.4,0,1.57,0,0], 0.5, 0.5)

• Example Parameters:

• xd -> Tool speeds of: x=500 mm/s, y=400 mm/s, rx=90 deg/s, ry and rz=0 deg/s

• a = 0.5 m/s^2 -> acceleration of the tool

• t = 0.5 s -> time before the function returns

15.45. stop_conveyor_tracking(a=20)

Stop tracking the conveyor, started by track_conveyor_linear() or track_conveyor_circular(), and
decelerate all joint speeds to zero.

Parameters

a: joint acceleration [rad/s^2] (optional)

Example command: stop_conveyor_tracking(a=15)

• Example Parameters:

• a = 15 rad/s^2 -> acceleration of the joints

15.46. stopj(a)

Stop (linear in joint space)

Decelerate joint speeds to zero

Parameters

a: joint acceleration [rad/s^2] (of leading axis)

Example command: stopj(2)

• Example Parameters:

• a = 2 rad/s^2 -> rate of deceleration of the leading axis.

15.47. stopl(a, aRot=’a’)

Stop (linear in tool space)

Decelerate tool speed to zero

Parameters

a: tool accleration [m/s^2]

aRot: tool acceleration [rad/s^2] (optional), if not defined a, position acceleration, is used

Script Directory 49 PolyScope X

15. Module motion

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

Example command: stopl(20)

• Example Parameters:

• a = 20 m/s^2 -> rate of deceleration of the tool

• aRot -> tool deceleration [rad/s^2] (optional), if not defined, position acceleration, is used.
i.e. it supersedes the "a" deceleration.

15.48. tool_wrench_limit_set(frame_offset, Fx, Fy, Fz,
Mx,My,Mz)

Limit the wrench (forces and torques) caused by motion of the robot in a frame given relative to the tool
flange. The wrench is limited in normal and reduced mode operation, as well as during protective stops,
safeguard stops, 3PE stops and emergency stops. For this reason, it can affect robot motion speed to
ensure adherence to safety limits. Usage can help prevent dropping items by limiting accelerations as well
as reducing wrench applied to the attached tool.

This limitation does not affect the forces and torques that can be applied in force control.

Parameters:

frame_offset: Pose specifying frame relative to the tool flange similarly to how the TCP offset is
specified. The first three coordinates specify translational offset along the x- y- and z-axis in meters. The
last three specify the rotational offset using the axis-angle representation in radians.

Fx (optional): Float, setting maximum acceleration force along the X-axis in the specified frame.

Fy (optional): Float, setting maximum acceleration force along the Y-axis in the specified frame.

Fz (optional): Float, setting maximum acceleration force along the Z-axis in the specified frame.

Mx (optional): Float, setting maximum acceleration torque around the X-axis in the specified frame.

My (optional): Float, setting maximum acceleration torque around the Y-axis in the specified frame.

Mz (optional): Float, setting maximum acceleration torque around the Z-axis in the specified frame.

Any optional parameter not specified means the axis is only limited by standard robot limitations.

Example command: tool_wrench_limit_set(p[0, 0, 0.1, 0, 0, 1.57], Mx=10, My=15)

Example Parameters:

• frame_offset = p[0, 0, 0.1, 0, 0, 1.57] → limitation will be applied in a frame offset 10 cm in front of
the tool flange rotated by 90 degrees around the axis of displacement.

• Mx = 10→ acceleration torque will be limited to 10 Nm around the X-axis in the specified frame.

• My = 15→ acceleration torque will be limited to 15 Nm around the Y-axis in the specified frame.

Remaining forces and torques will not be limited by this algorithm.

Example command: tool_wrench_limit_set(get_tcp_offset(), Fz=50)

Example Parameters:

PolyScope X 50 Script Directory

15. Module motion

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

• frame_offset is equal to the active TCP offset.

• Fz = 50→ acceleration force is limited such that force does not exceed 50 N along the Z-axis in the
TCP frame.

NOTICE

The set limit is persisted until shutdown of the controller or until explicitly disabled by
executing tool_wrench_limit_disable().

15.49. tool_wrench_limit_disable()

Disable tool wrench limitation set by tool_wrench_limit_set.

15.50. teach_mode()

Deprecated:

Set robot in freedrive mode. In this mode the robot can be moved around by hand in the same way as by
pressing the "freedrive" button.

The robot will not be able to follow a trajectory (eg. a movej) in this mode.

Deprecated:

This function is replaced by freedrive_mode and it should therefore not be used moving forward.

15.51. track_conveyor_circular(center, ticks_per_
revolution, rotate_tool=’False’, encoder_index=0)

Makes robot movement (movej() etc.) track a circular conveyor.

>>> track_conveyor_circular(p[0.5,0.5,0,0,0,0],500.0, false)

The example code makes the robot track a circular conveyor with center in p[0.5,0.5,0,0,0,0] of the robot
base coordinate system, where 500 ticks on the encoder corresponds to one revolution of the circular
conveyor around the center.

Parameters

center: Pose vector that determines center of the conveyor in the base coordinate system of the robot.

ticks_per_revolution: How many ticks the encoder sees when the conveyor moves one revolution.

rotate_tool: Should the tool rotate with the coneyor or stay in the orientation specified by the trajectory
(movel() etc.).

Script Directory 51 PolyScope X

15. Module motion

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

encoder_index: The index of the encoder to associate with the conveyor tracking. Must be either 0 or
1. This is an optional argument, and please note the default of 0. The ability to omit this argument will allow
existing programs to keep working. Also, in use cases where there is just one conveyor to track consider
leaving this argument out.

Example command: track_conveyor_circular(p[0.5,0.5,0,0,0,0], 500.0, false)

• Example Parameters:

• center = p[0.5,0.5,0,0,0,0] location of the center of the conveyor

• ticks_per_revolution = 500 the number of ticks the encoder sees when the conveyor moves
one revolution

• rotate_tool = false the tool should not rotate with the conveyor, but stay in the orientation
specified by the trajectory (movel() etc.).

15.52. track_conveyor_linear(direction, ticks_per_meter,
encoder_index=0)

Makes robot movement (movej() etc.) track a linear conveyor.

>>> track_conveyor_linear(p[1,0,0,0,0,0],1000.0)

The example code makes the robot track a conveyor in the x-axis of the robot base coordinate system,
where 1000 ticks on the encoder corresponds to 1m along the x-axis.

Parameters

direction: Pose vector that determines the direction of the conveyor in the base coordinate system of
the robot

ticks_per_meter: How many ticks the encoder sees when the conveyor moves one meter

encoder_index: The index of the encoder to associate with the conveyor tracking. Must be either 0 or 1.
This is an optional argument, and please note the default of 0. The ability to omit this argument will allow
existing programs to keep working. Also, in use cases where there is just one conveyor to track consider
leaving this argument out.

Example command: track_conveyor_linear(p[1,0,0,0,0,0], 1000.0)

• Example Parameters:

• direction = p[1,0,0,0,0,0] Pose vector that determines the direction of the conveyor in the
base coordinate system of the robot

• ticks_per_meter = 1000. How many ticks the encoder sees when the conveyor moves one
meter.

PolyScope X 52 Script Directory

15. Module motion

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

16. Module internals

16.1. force()

Returns the force exerted at the TCP

Return the current externally exerted force at the TCP. The force is the norm of Fx, Fy, and Fz calculated
using get_tcp_force().

Return Value

The force in Newton (float)

Note: Refer to force_mode() for taring the sensor.

16.2. estimate_payload(poses, wrenches)

Parameters

• poses - A list of at least four TCP poses. The orientation of the poses should be as varied as
possible, in order to get a good estimate.

If the rotational distance between any two poses is less than Pi / (2*n) radians, where n is the
number of poses in poses, an exception will be thrown.

• TCP poses can be recorded with get_actual_tcp_pose().

wrenches - A list of wrenches resulting from gravity acting on the payload. Must have the same
length as poses. Each wrench in wrenches should be measured at the corresponding pose in
poses. The wrenches must be given at the tool flange but in robot base orientation. Wrenches in the
required orientation can be recorded with get_tcp_force() when in the desired pose.

Return value:

struct[mass, cog]

mass is a double representing the weight of the payload in kg.

cog is a 3d vector representing the offset from the tool flange to the payload center of
gravity in tool frame in meters.

Example usage (question)

repeat n times

movej(*some distinct pose*)

sleep(*long enough for the arm to stabilize*)

pose_list.append(get_tcp_force)

wrench_list.append(get_actual_tcp_pose)

payload = estimate_payload(pose_list, wrench_list)

set_payload(payload.mass, payload.cog)

Script Directory 53 PolyScope X

16. Module internals

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

16.3. get_actual_joint_positions()

Returns the actual angular positions read by the joint encoders

The angular actual positions are expressed in radians and returned as a vector of length 6. Note that the
output might differ from the output of get_target_joint_positions(), especially during
acceleration and heavy loads.

Return Value

The current actual joint angular position vector in rad : [Base, Shoulder, Elbow, Wrist1, Wrist2, Wrist3]

16.4. get_actual_joint_positions_history(steps=0)

Returns the actual past angular positions of all joints

This function returns the angular positions as reported by the function "get_actual_joint_
positions()" which indicates the number of controller time steps occurring before the current time
step.

An exception is thrown if indexing goes beyond the buffer size.

Parameters

steps: The number of controller time steps required to go back. 0 corresponds to "get_actual_
joint_positions()"

Return Value

The joint angular position vector in rad : [Base, Shoulder, Elbow, Wrist1, Wrist2, Wrist3] that was actual at
the provided number of steps before the current time step.

16.5. get_actual_joint_speeds()

Returns the actual angular velocities of all joints

The angular actual velocities are expressed in radians pr. second and returned as a vector of length 6.
Note that the output might differ from the output of get_target_joint_speeds(), especially during
acceleration and heavy loads.

Return Value

The current actual joint angular velocity vector in rad/s: [Base, Shoulder, Elbow, Wrist1, Wrist2, Wrist3]

16.6. get_actual_tcp_pose()

Returns the current measured tool pose

PolyScope X 54 Script Directory

16. Module internals

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

Returns the 6d pose representing the tool position and orientation specified in the base frame. The
calculation of this pose is based on the actual robot encoder readings.

Return Value

The current actual TCP vector [X, Y, Z, Rx, Ry, Rz]

16.7. get_actual_tcp_speed()

Returns the current measured TCP speed

The speed of the TCP retuned in a pose structure. The first three values are the cartesian speeds along
x,y,z, and the last three define the current rotation axis, rx,ry,rz, and the length |rz,ry,rz| defines the
angular velocity in radians/s.

Return Value

The current actual TCP velocity vector [X, Y, Z, Rx, Ry, Rz]

16.8. get_actual_tool_flange_pose()

Returns the current measured tool flange pose

Returns the 6d pose representing the tool flange position and orientation specified in the base frame,
without the Tool Center Point offset. The calculation of this pose is based on the actual robot encoder
readings.

Return Value

The current actual tool flange vector: [X, Y, Z, Rx, Ry, Rz]

Note: See get_actual_tcp_pose for the actual 6d pose including TCP offset.

16.9. get_base_acceleration()

Returns the robot base acceleration vector (see set_base_acceleration) currently active in the controller
and SCB kinematics and dynamics models.

Return Value

User specified robot base acceleration vector in m/s^2 as a 3D vector ([float, float, float])

16.10. get_controller_temp()

Returns the temperature of the control box

Script Directory 55 PolyScope X

16. Module internals

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

The temperature of the robot control box in degrees Celcius.

Return Value

A temperature in degrees Celcius (float)

16.11. get_forward_kin(q=’current_joint_positions’,
tcp=’active_tcp’)

Calculate the forward kinematic transformation (joint space -> tool space) using the calibrated robot
kinematics. If no joint position vector is provided the current joint angles of the robot arm will be used. If no
tcp is provided the currently active tcp of the controller will be used.

Parameters

q: joint position vector (Optional)

tcp: tcp offset pose (Optional)

Return Value

tool pose

Example command: get_forward_kin([0.,3.14,1.57,.785,0,0], p[0,0,0.01,0,0,0])

• Example Parameters:

• q = [0.,3.14,1.57,.785,0,0] -> joint angles of j0=0 deg, j1=180 deg, j2=90 deg, j3=45 deg,
j4=0 deg, j5=0 deg.

• tcp = p[0,0,0.01,0,0,0] -> tcp offset of x=0mm, y=0mm, z=10mm and rotation vector of rx=0
deg., ry=0 deg, rz=0 deg.

16.12. get_gravity()

Returns the gravity acceleration vector (see set_gravity) currently active in the controller and SCB
kinematics and dynamics models.

Return Value

User specified gravity acceleration vector in m/s^2 as a 3D vector ([float, float, float])

16.13. get_inverse_kin(x, qnear, maxPositionError =1e-
10,maxOrientationError =1e-10, tcp=’active_tcp’)

Calculate the inverse kinematic transformation (tool space -> joint space). If qnear is defined, the solution
closest to qnear is returned.

PolyScope X 56 Script Directory

16. Module internals

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

Otherwise, the solution closest to the current joint positions is returned. If no tcp is provided the currently
active tcp of the controller is used.

Parameters

x: tool pose

qnear: list of joint positions (Optional)

maxPositionError: the maximum allowed position error (Optional)

maxOrientationError: the maximum allowed orientation error (Optional)

tcp: tcp offset pose (Optional)

Return Value

joint positions

Example command: get_inverse_kin(p[.1,.2,.2,0,3.14,0], [0.,3.14,1.57,.785,0,0])

• Example Parameters:

• x = p[.1,.2,.2,0,3.14,0] -> pose with position of x=100mm, y=200mm, z=200mm and rotation
vector of rx=0 deg., ry=180 deg, rz=0 deg.

• qnear = [0.,3.14,1.57,.785,0,0] -> solution should be near to joint angles of j0=0 deg, j1=180
deg, j2=90 deg, j3=45 deg, j4=0 deg, j5=0 deg.

• maxPositionError is by default 1e-10 m

• maxOrientationError is by default 1e-10 rad

16.14. get_inverse_kin_has_solution(pose, qnear,
maxPositionError=1E-10,maxOrientationError=1e-10,
tcp="active_tcp")

Check if get_inverse_kin has a solution and return boolean (True) or (False).

This can be used to avoid the runtime exception of get_inverse_kin when no solution exists.

Parameters

pose: tool pose

qnear: list of joint positions (Optional)

maxPositionError: the maximum allowed position error (Optional)

maxOrientationError: the maximum allowed orientation error (Optional)

tcp: tcp offset pose (Optional)

Return Value

True if get_inverse_kin has a solution, False otherwise (bool)

Script Directory 57 PolyScope X

16. Module internals

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

16.15. get_joint_temp(j)

Returns the temperature of joint j

The temperature of the joint house of joint j, counting from zero. j=0 is the base joint, and j=5 is the last
joint before the tool flange.

Parameters

j: The joint number (int)

Return Value

A temperature in degrees Celcius (float)

16.16. get_joint_torques()

Returns the torques of all joints

The torque on the joints, corrected by the torque needed to move the robot itself (gravity, friction, etc.),
returned as a vector of length 6.

Return Value

The joint torque vector in Nm: [Base, Shoulder, Elbow, Wrist1, Wrist2, Wrist3]

16.17. get_steptime()

Returns the duration of the robot time step in seconds.

In every time step, the robot controller will receive measured joint positions and velocities from the robot,
and send desired joint positions and velocities back to the robot. This happens with a predetermined
frequency, in regular intervals. This interval length is the robot time step.

Return Value

duration of the robot step in seconds

16.18. get_target_joint_positions()

Returns the desired angular positions that are sent to all the joints at each time step

The angular target positions are expressed in radians and returned as a vector of length 6. Note that the
output might differ from the output of get_actual_joint_positions(), especially during acceleration and
heavy loads.

Return Value

The current target joint angular position vector in rad: [Base, Shoulder, Elbow, Wrist1, Wrist2, Wrist3]

PolyScope X 58 Script Directory

16. Module internals

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

16.19. get_target_joint_speeds()

Returns the desired angular velocities of all joints

The angular target velocities are expressed in radians pr. second and returned as a vector of length 6.
Note that the output might differ from the output of get_actual_joint_speeds(), especially during
acceleration and heavy loads.

Return Value

The current target joint angular velocity vector in rad/s: [Base, Shoulder, Elbow, Wrist1, Wrist2, Wrist3]

16.20. get_target_payload()

Returns the weight of the active payload

Return Value

The weight of the current payload in kilograms

16.21. get_target_payload_cog()

Retrieve the Center Of Gravity (COG) coordinates of the active payload.

This scripts returns the COG coordinates of the active payload, with respect to the tool flange

Return Value

The 3d coordinates of the COG [CoGx, CoGy, CoGz] in meters

16.22. get_target_payload_inertia()

Returns the most recently set payload inertia matrix.

This script function returns the inertia matrix of the active payload in tool flange coordinates, with origin at
the CoG.

Return Value

The six dimensional coordinates of the payload inertia matrix [Ixx, Iyy, Izz, Ixy, Ixz, Iyz] expressed in
kg*m^2.

Script Directory 59 PolyScope X

16. Module internals

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

16.23. get_target_tcp_pose()

Returns the current target tool pose

Returns the 6d pose representing the tool position and orientation specified in the base frame. The
calculation of this pose is based on the current target joint positions.

Return Value

The current target TCP vector [X, Y, Z, Rx, Ry, Rz]

16.24. get_target_tcp_speed()

Returns the current target TCP speed

The desired speed of the TCP returned in a pose structure. The first three values are the cartesian speeds
along x,y,z, and the last three define the current rotation axis, rx,ry,rz, and the length |rz,ry,rz| defines the
angular velocity in radians/s.

Return Value

The TCP speed (pose)

16.25. get_target_waypoint()

Returns the target waypoint of the active move

This is different from the get_target_tcp_pose() which returns the target pose for each time step. The get_
target_waypoint() returns the same target pose for movel, movej, movep or movec during the motion. It
returns the same as get_target_tcp_pose(), if none of the mentioned move functions are running.

This method is useful for calculating relative movements where the previous move command uses blends.

Return Value

The desired waypoint TCP vector [X, Y, Z, Rx, Ry, Rz]

16.26. get_tcp_force()

Returns the force/torque vector at the tool flange.

The function returns p[Fx(N), Fy(N), Fz(N), TRx(Nm), TRy(Nm), TRz(Nm)] where the forces: Fx, Fy, and
Fz in Newtons and the torques: TRx, TRy and TRz in Newtonmeters are all measured at the tool flange
with the orientation of the robot base coordinate system.

Return Value

The force/torque vector

PolyScope X 60 Script Directory

16. Module internals

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

Note:

Refer to zero_ftsensor() for taring sensor.

Example:

def get_wrench_at_tool_flange():

ft = get_tcp_force()

t_flange_in_base

= pose_trans(get_target_tcp_pose(), pose_inv(get_tcp_offset())) flange_rot
= pose_inv(p[0, 0, 0, t_flange_in_base[3], t_flange_in_base[4], t_flange_in_
base[5]])

f = pose_trans(flange_rot, p[ft[0], ft[1], ft[2], 0, 0, 0])

t = pose_trans(flange_rot, p[ft[3], ft[4], ft[5], 0, 0, 0])

return [f[0], f[1], f[2], t[0], t[1], t[2]]

end

def get_wrench_at_tcp():

return wrench_trans(get_tcp_offset(), get_wrench_at_tool_flange())

end

16.27. get_tcp_offset()

Gets the active tcp offset, i.e. the transformation from the output flange coordinate system to the TCP as a
pose.

Return Value

tcp offset pose

16.28. get_tool_accelerometer_reading()

Returns the current reading of the tool accelerometer as a three-dimensional vector.

The accelerometer axes are aligned with the tool coordinates, and pointing an axis upwards results in a
positive reading.

Return Value

X, Y, and Z composant of the measured acceleration in SI-units (m/s^2).

Script Directory 61 PolyScope X

16. Module internals

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

16.29. get_tool_current()

Returns the tool current

The tool current consumption measured in ampere.

Return Value

The tool current in ampere.

16.30. get_tool_temp()

Returns the most recently measured temperature of the tool.

Return Value

Measured tool temperature in degrees Celcius (float)

16.31. high_holding_torque_disable()

Disables automatically applying high hold torque when the robot is stationary, which is the default
behavior. The UR controller automatically applies high holding torque when the following is true:

• The program state is PROGRAM_STATE_RUNNING

• All actual joint movement <= 0.01 rad/s

• All target joint velocities == 0

Parameters:

None

Example command:

high_holding_torque_disable()

This function script disables the high holding torque behavior. Note that the default is restored to enabled
after restarting the controller.

See also:

high_holding_torque_enable()

Applications: Disable high holding torque if you want a stationary robot to issue a protective stop when
colling with an object. For example, if the robot is being transported on a linear rail or vertical lift. However,
if just the base of the robot collides with an object while moving, the protective stop may not be issued.
Adequate safety precautions should be put in place to guard against this situation.

PolyScope X 62 Script Directory

16. Module internals

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

16.32. high_holding_torque_enable()

Enables high hold torque when the robot is stationary. This function is used to reverse the behavior of the
high_holding_torque_disable() command.

Parameters:

None

Example command:

high_holding_torque_enable()

See also

high_holding_torque_disable()

16.33. is_steady()

The function will return true when the robot has been standing still with zero target velocity for 500ms

When the function returns true, the robot is able to adapt to large external forces and torques, e.g. from
screwdrivers, without issuing a protective stop.

Return Value

True when the robot able to adapt to external forces, false otherwise (bool)

16.34. is_within_safety_limits(position, qNear=current
joint configuration)

Checks if the given pose or joint positions are reachable and within the currently active safety limits of the
robot.

This check considers:

• Joint position limits

• Safety planes

• Tool orientation limit

• Physical range of the robot

Parameters

position: Pose or joint positions. When a pose is provided, it is recommended to also supply qNear to
ensure that the correct inverse kinematics solution is checked.

Script Directory 63 PolyScope X

16. Module internals

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

qNear: List of joint angles (optional). Only used for calculating inverse kinematics when position is a pose.
If not specified, the current joint positions are used.

Return Value

True if within limits, false otherwise (bool).

NOTICE

In order to simply check if a pose is physically reachable by the robot, use get_inverse_
kin_has_solution instead.

16.35. popup(s, title=’Popup’, warning=False,
error=False, blocking=False)

Display popup on GUI

Display message in popup window on GUI.

Parameters

s:message string

title: title string

warning: warning message?

error: error message?

blocking: if True, program will be suspended until "continue" is pressed

Example command: popup("here I am", title="Popup #1",blocking=True)

• Example Parameters:

• s popup text is "here I am"

• title popup title is "Popup #1"

• blocking = true -> popup must be cleared before other actions will be performed.

16.36. powerdown()

Shut down the robot, and power off the robot and controller.

16.37. protective_stop()

Trigger a protective stop, pausing the program and stopping motion on the planned trajectory.

Notes:

PolyScope X 64 Script Directory

16. Module internals

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

This function is not intended for use for simply pausing the running program (see Special keywords:
pause).

16.38. set_base_acceleration(a)

Sets the acceleration of the robot base. This function is used when the robot is attached to a moving base
such a linear rail or vertical lift. Specifying the base acceleration is used to prevent premature protective
stops by informing the control system that forces are being exerted on the robot through acceleration of
the base.

Parameters

a: the linear acceleration of the base in x, y, z directions

Example command:

set_base_acceleration([0.10 0.0 0.0])

Example Parameters:

a = [0.10 0 0] specifies acceleration in the linear X direction of 0.10 m/s²

16.39. set_baselight_off()

NOTICE

Only applies to UR Series

Turns the baselight completely off.

16.40. set_baselight_iec()

NOTICE

Only applies to UR Series

Make the baselight comply to the IEC 60204-1 standard and indicate whether the robot is in a safety stop,
in freedrive as well as the operational mode. Further details of the colors can be seen in the UR20 manual.

Script Directory 65 PolyScope X

16. Module internals

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

16.41. set_baselight_solid(r,g,b)

NOTICE

Only applies to UR Series

Set a color on the entire baselight ring as specified by the given RGB values in the range 0-255.

16.42. set_gravity(d)

Set the direction of the acceleration experienced by the robot. When the robot mounting is fixed, this
corresponds to an accleration of g away from the earth’s centre.

>>> set_gravity([0, 9.82*sin(theta), 9.82*cos(theta)])

will set the acceleration for a robot that is rotated "theta" radians around the x-axis of the robot base
coordinate system

Parameters

d: 3D vector, describing the direction of the gravity, relative to the base of the robot.

Example command: set_gravity[(0,9.82,0)]

• Example Parameters:

• d is vector with a direction of y (direction of the robot cable) and a magnitude of 9.82 m/s^2
(1g).

16.43. set_payload(m, cog)

Parameters

m: mass in kilograms

cog: Center of Gravity, a vector [CoGx, CoGy, CoGz] specifying the displacement (in meters) from the
toolmount.

Deprecated: See set_target_payload to set mass, CoG and payload inertia matrix at the same time.

Set payload mass and center of gravity while resetting payload inertia matrix

Sets the mass and center of gravity (abbr. CoG) of the payload.

This function must be called, when the payload mass or mass CoG offset changes - i.e. when the robot
picks up or puts down a workpiece.

Note: The force torque measurements are automatically zeroed when setting the payload. That ensures
the readings are compensated for the payload. This is similar to the behavior of zero_ftsensor()

Warnings:

PolyScope X 66 Script Directory

16. Module internals

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

• This script is deprecated since SW 5.10.0 because of the risk of inconsistent payload parameters.
Use the set_target_payload instead to set mass, CoG and inertia matrix.

• Omitting the cog parameter is not recommended. The Tool Center Point (TCP) will be used if the
cog parameter is missing with the side effect that later calls to set_tcp will change also the CoG to
the new TCP. Use the set_payload_mass function to change only the mass or use the get_
target_payload_cog as second argument to not change the CoG.

• Using this script function to modify payload parameters will reset the payload inertia matrix.

Example command:

• set_payload(3., [0,0,.3])

• Example Parameters:

• m = 3→mass is set to 3 kg payload

• cog = [0,0,.3] Center of Gravity is set to x=0 mm, y=0 mm, z=300 mm from the
center of the tool mount in tool coordinates

• set_payload(2.5, get_target_payload_cog())

• Example Parameters:

• m = 2.5 →mass is set to 2.5 kg payload

• cog = use the current COG setting

16.44. set_payload_cog(CoG)

Deprecated: See set_target_payload to set mass, CoG and payload inertia matrix at the same time.

Set the Center of Gravity (CoG) and reset payload inertia matrix

Warning: Using this script function to modify payload parameters will reset the payload inertia matrix.

Note: The force torque measurements are automatically zeroed when setting the payload. That ensures
the readings are compensated for the payload. This is similar to the behavior of zero_ftsensor()

16.45. set_payload_mass(m)

Parameters

m: mass in kilograms

Deprecated: See set_target_payload to set mass, CoG and payload inertia matrix at the same time.

Set payload mass and reset payload inertia matrix

See also set_payload.

Sets the mass of the payload and leaves the center of gravity (CoG) unchanged.

Note: The force torque measurements are automatically zeroed when setting the payload. That ensures
the readings are compensated for the payload. This is similar to the behavior of zero_ftsensor()

Warnings:

Script Directory 67 PolyScope X

16. Module internals

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

• This script is deprecated since SW 5.10.0 because of the risk of inconsistent payload parameters.
Use the set_target_payload instead to set mass, CoG and inertia matrix.

• Using this script function to modify payload parameters will reset the payload inertia matrix.

16.46. set_target_payload(m, cog, inertia=[0, 0, 0, 0, 0,
0], transition_time=0)

Sets the mass, CoG (center of gravity), the inertia matrix of the active payload and the transition time for
applying new settings.

This function must be called when the payload mass, the mass displacement (CoG) or the inertia matrix
changes - (i.e. when the robot picks up or puts down a workpiece).

Parameters

m: mass in kilograms.

cog: Center of Gravity, a vector with three elements [CoGx, CoGy, CoGz] specifying the offset (in meters)
from the tool mount.

inertia: payload inertia matrix (in kg*m^2), as a vector with six elements [Ixx, Iyy, Izz, Ixy, Ixz, Iyz] with
origin in the CoG and the axes aligned with the tool flange axes.

transition_time: the duration of the payload property changes in seconds

Notes:

• This script should be used instead of the deprecated set_payload, set_payload_mass, and
set_payload_cog.

• The payload mass and CoG are required, the inertia matrix and transition time are optional.

• When inertia matrix is left out, a zero matrix will be used.

• When transition time is left out, the change will be applied instantaneously, identically to how
the deprecated set_payload, set_payload_mass and set_payload_cog work.

• The maximum value allowed for each of the components of the inertia matrix is +/- 133 kg*m^2. An
exception is thrown if limits are exceeded.

• The first three elements of the inertia matrix (i.e. Ixx, Iyy, Izz) cannot be negative. An exception is
thrown if either value is negative.

• The force/torque measurements are automatically zeroed when setting the payload. That ensures
the readings are compensated for the payload. This is similar to the behaviour of zero_ftsensor
().

• Setting a transition time larger than zero avoids the robot doing a small "jump" when payload
changes. This is useful when picking up or releasing heavy objects.

• The internal force/torque sensor in the robot tool is reset each time the payload is updated. This
means that the final reset will be performed at the end of the payload transition time. If the payload
is being accelerated at the time of the final reset, the force/torque measurement will be affected. It's
always recommended to call zero_ftsensor() to reset the force/torque sensor before using it,
e.g. in Force Mode.

PolyScope X 68 Script Directory

16. Module internals

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

16.47. set_tcp(pose, tcp_name="")

Sets the active tcp offset, i.e., the transformation from the output flange coordinate system to the TCP as a
pose, and assigns a name to the TCP. If no name is provided, the default name is an empty string.

Parameters

• pose: A pose describing the transformation.

• tcp_name (optional, default=""): A string that assigns a name to the TCP.

Example command: set_tcp(p[0.,.2,.3,0.,3.14,0.], "custom_tcp_name")

• Example Parameters:

• pose = p[0.,.2,.3,0.,3.14,0.] -> tool center point is set to x=0mm, y=200mm, z=300mm,
rotation vector is rx=0 deg, ry=180 deg, rz=0 deg. In tool coordinates.

• tcp_name = "custom_tcp_name" -> the name assigned to the TCP.

16.48. sleep(t)

Sleep for an amount of time

Parameters

t: time [s]

Example command: sleep(3.)

• Example Parameters:

• t = 3. -> time to sleep

16.49. time(mode=0)

Get current time from selected source.

Parameters

mode: integer, one of:

• 0: Controller execution time. Time counted since low level controller start. Guaranteed monotonic.
Reset on robot restart.

• 1: Reserved.

• 2: System time in GMT time zone. Not guaranteed to be monotonic - can go backwards when
system time is adjusted.

Return

Function retruns structure in format struct(sec, nanosec)

Example 1: Get seconds part of current time counted since low level controller start.

current_time_s = time().sec

Script Directory 69 PolyScope X

16. Module internals

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

Example 2: Get current system time in seconds including fraction of second.

t = time() global current_time_s = t.sec + t.nanosec / 1000000000

Example 3: Get current date derived from system clock. NOTE: time(2) function returns GMT time.

Converts seconds since 1970.01.01 to date

Based on http://howardhinnant.github.io/date_algorithms.html

Returns:

struct(year, month, day)

def seconds_to_date(z):

local d = struct(year = 0, month = 0, day = 0)

z = floor(z / 86400)

z = z + 719468

local era = floor(z/146097)

local doe = z - era * 146097

local yoe = floor((doe - floor(doe/1460) + floor(doe/36524) - floor
(doe/146096)) / 365)

d.year = yoe + era * 400

local doy = doe - (365*yoe + floor(yoe/4) - floor(yoe/100))

local mp = floor((5*doy + 2)/153)

d.day = doy - floor((153*mp + 2)/5) + 1

if(mp < 10):

d.month = mp + 3

else:

d.month = mp - 9

end

if(d.month <= 2):

d.year = d.year + 1

end

return d

end

date_gmt = seconds_to_date(time(2).sec)

Example 4: Get current GMT time derived from system clock.

Converts seconds since 1970.01.01 to time of day

Returns:

struct(hour, minute, second)

def seconds_to_time(z):

PolyScope X 70 Script Directory

16. Module internals

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

local t = struct(hour = 0, minute = 0, second = 0)

local sod = z % 86400

t.hour = floor(sod / 3600)

t.minute = floor((sod - t.hour * 3600) / 60)

t.second = sod % 60

return t

end

time_gmt = seconds_to_time(time(2).sec)

16.50. str_at(src, index)

Provides direct access to the bytes of a string.

This script returns a string containing the byte in the source string at the position corresponding to the
specified index. It may not correspond to an actual character in case of strings with special encoded
character (i.e. multi-byte or variable-length encoding)

The string is zero-indexed.

Parameters

src: source string.

index: integer specifying the position inside the source string.

Return Value

String containing the byte at position index in the source string. An exception is raised if the index is not
valid.

Example command:

• str_at("Hello", 0)

• returns "H"

• str_at("Hello", 1)

• returns "e"

• str_at("Hello", 10)

• error (index out of bound)

• str_at("", 0)

• error (source string is empty)

16.51. str_cat(op1, op2)

String concatenation

Script Directory 71 PolyScope X

16. Module internals

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

This script returns a string that is the concatenation of the two operands given as input. Both operands can
be one of the following types: String, Boolean, Integer, Float, Pose, List of Boolean / Integer / Float /
Pose. Any other type will raise an exception.

The resulting string cannot exceed 1023 characters, an exception is thrown otherwise.

Float numbers will be formatted with 6 decimals, and trailing zeros will be removed.

The function can be nested to create complex strings (see last example).

Parameters

op1: first operand

op2: second operand

Return Value

String concatenation of op1 and op2

Example command:

• str_cat("Hello", " World!")

• returns "Hello World!"

• str_cat("Integer ", 1)

• returns "Integer 1"

• str_cat("", p[1.0, 2.0, 3.0, 4.0, 5.0, 6.0])

• returns "p[1, 2, 3, 4, 5, 6]"

• str_cat([True, False, True], [1, 0, 1])

• returns "[True, False, True][1, 0, 1]"

• str_cat(str_cat("", str_cat("One", "Two")),str_cat(3, 4))

• returns "OneTwo34"

16.52. str_empty(str)

Returns true when str is empty, false otherwise.

Parameters

str: source string.

Return Value

True if the string is empty, false otherwise

Example command:

• str_empty("")

• returns True

• str_empty("Hello")

• returns False

PolyScope X 72 Script Directory

16. Module internals

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

16.53. str_find(src, target, start_from=0)

Finds the first occurrence of the substring target in src.

This script returns the index (i.e. byte) of the the first occurrence of substring target in str, starting from
the given (optional) position.

The result may not correspond to the actual position of the first character of target in case src contains
multi-byte or variable-length encoded characters.

The string is zero-indexed.

Parameters

src: source string.

target: substring to search.

start_from: optional starting position (default 0).

Return Value

The index of the first occurrence of target in src, -1 if target is not found in src.

Example command:

• str_find("Hello World!", "o")

• returns 4

• str_find("Hello World!", "lo")

• returns 3

• str_find("Hello World!", "o", 5)

• returns 7

• str_find("abc", "z")

• returns -1

16.54. str_len(str)

Returns the number of bytes in a string.

Please not that the value returned may not correspond to the actual number of characters in sequences of
multi-byte or variable-length encoded characters.

The string is zero-indexed.

Parameters

str: source string.

Return Value

The number of bytes in the input string.

Example command:

Script Directory 73 PolyScope X

16. Module internals

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

• str_len("Hello")

• returns 5

• str_len("")

• returns 0

16.55. str_sub(src, index, len)

Returns a substring of src.

The result is the substring of src that starts at the byte specified by index with length of at most len bytes.
If the requested substring extends past the end of the original string (i.e. index + len > src
length), the length of the resulting substring is limited to the size of src.

An exception is thrown in case index and/or len are out of bounds. The string is zero-indexed.

Parameters

src: source string.

index: integer value specifying the initial byte in the range [0, src length]

len: (optional) length of the substring in the range [0, MAX_INT]. If len is not specified, the string in the
range [index, src length].

Return Value

the portion of src that starts at byte index and spans len characters.

Example command:

• str_sub("0123456789abcdefghij", 5, 3)

• returns "567"

• str_sub("0123456789abcdefghij", 10)

• returns "abcdefghij"

• str_sub("0123456789abcdefghij", 2, 0)

• returns "" (len is 0)

• str_sub("abcde", 2, 50)

• returns "cde"

• str_sub("abcde", -5, 50)

• error: index is out of bounds

16.56. sync()

Uses up the remaining "physical" time a thread has in the current frame.

PolyScope X 74 Script Directory

16. Module internals

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

16.57. textmsg(s1, s2=’’)

Send text message to log

Send message with s1 and s2 concatenated to be shown on the PolyScope log-tab.

The PolyScope log-tab is intended for general application status.

It is not recommended to add many messages at a high rate.

Parameters

s1:message string, variables of other types (int, bool poses etc.) can also be sent

s2:message string, variables of other types (int, bool poses etc.) can also be sent

Example command: textmsg("value=", 3)

• Example Parameters:

• s1 set first part of message to "value="

• s2 set second part of message to 3

• message in the log is "value=3"

16.58. to_num(str)

Converts a string to a number.

to_num returns an integer or a float depending on the presence of a decimal point in the input string. Only
’.’ is recognized as decimal point independent of locale settings.

Valid strings can contains optional leading white space(s) followed by an optional plus (’+’) or minus sign
(’-’) and then one of the following:

(i) A decimal number consisting of a sequence of decimal digits (e.g. 10, -5), an optional ’.’ to indicate a
float number (e.g. 1.5234, -2.0, .36) and a optional decimal exponent that indicates multiplication by a
power of 10 (e.g. 10e3, 2.5E-5, -5e-4).

(ii) A hexadecimal number consisting of "0x" or "0X" followed by a nonempty sequence of hexadecimal
digits (e.g. "0X3A", "0xb5").

(iii) An infinity (either "INF" or "INFINITY", case insensitive)

(iv) A Not-a-Number ("NAN", case insensitive)

Runtime exceptions are raised if the source string doesn’t contain a valid number or the result is out of
range for the resulting type.

Parameters

str: string to convert

Return Value

Integer or float number according to the input string.

Example command:

Script Directory 75 PolyScope X

16. Module internals

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

• to_num("10")

• returns 10 //integer

• to_num("3.14")

• returns 3.14 //float

• to_num("-3.0e5")

• returns -3.0e5 //float due to ’.’ in the input string

• to_num("+5.")

• returns 5.0 //float due to ’.’ in the input string

• to_num("123abc")

• error string doesn’t contain a valid number

16.59. to_str(val)

Gets string representation of a value.

This script converts a value of type Boolean, Integer, Float, Pose (or a list of those types) to a string.

The resulting string cannot exceed 1023 characters.

Float numbers will be formatted with 6 decimals, and trailing zeros will be removed.

Parameters

val: value to convert

Return Value

The string representation of the given value.

Example command:

• to_str(10)

• returns "10"

• to_str(2.123456123456)

• returns "2.123456"

• to_str(p[1.0, 2.0, 3.0, 4.0, 5.0, 6.0])

• returns "p[1, 2, 3, 4, 5, 6]"

• to_str([True, False, True])

• returns "[True, False, True]"

16.60. tool_contact(direction)

Detects when a contact between the tool and an object happens.

Parameters

PolyScope X 76 Script Directory

16. Module internals

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

direction: List of six floats. The first three elements are interpreted as a 3D vector (in the robot base
coordinate system) giving the direction in which contacts should be detected. If all elements of the list are
zero, contacts from all directions are considered.

Return Value

Integer. The returned value is the number of time steps back to just before the contact have started. A
value larger than 0 means that a contact is detected. A value of 0 means no contact.

16.61. tool_contact_examples()

Example of usage in conjunction with the "get_actual_joint_positions_history()" function to allow the robot
to retract to the initial point of contact:

>>> def testToolContact():

>>> while True:

>>> step_back = tool_contact()

>>> if step_back <= 0:

>>> # Continue moving with 100mm/s

>>> speedl([0,0,-0.100,0,0,0], 0.5, t=get_steptime())

>>> else:

>>> # Contact detected!

>>> # Get q for when the contact was first seen

>>> q = get_actual_joint_positions_history(step_back)

>>> # Stop the movement

>>> stopl(3)

>>> # Move to the initial contact point

>>> movel(q)

>>> break

>>> end

>>> end

>>> end

Example command: tool_contact(direction = get_target_tcp_speed())

• Example Parameters:

• direction=get_target_tcp_speed() will detect contacts in the direction of TCP movement

tool_contact(direction = [1,0,0,0,0,0])

• Example Parameters:

• direction=[1,0,0,0,0,0] will detect contacts in the direction robot base X

Script Directory 77 PolyScope X

16. Module internals

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

17. Module urmath

17.1. acos(f)

Returns the arc cosine of f

Returns the principal value of the arc cosine of f, expressed in radians. A runtime error is raised if f lies
outside the range [-1, 1].

Parameters

f: floating point value

Return Value

the arc cosine of f.

Example command: acos(0.707)

• Example Parameters:

• f is the cos of 45 deg. (.785 rad)

• Returns .785

17.2. asin(f)

Returns the arc sine of f

Returns the principal value of the arc sine of f, expressed in radians. A runtime error is raised if f lies
outside the range [-1, 1].

Parameters

f: floating point value

Return Value

the arc sine of f.

Example command: asin(0.707)

• Example Parameters:

• f is the sin of 45 deg. (.785 rad)

• Returns .785

17.3. atan(f)

Returns the arc tangent of f

Returns the principal value of the arc tangent of f, expressed in radians.

Parameters

PolyScope X 78 Script Directory

17. Module urmath

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

f: floating point value

Return Value

the arc tangent of f.

Example command: atan(1.)

• Example Parameters:

• f is the tan of 45 deg. (.785 rad)

• Returns .785

17.4. atan2(x, y)

Returns the arc tangent of x/y

Returns the principal value of the arc tangent of x/y, expressed in radians. To compute the value, the
function uses the sign of both arguments to determine the quadrant.

Parameters

x: floating point value

y: floating point value

Return Value

the arc tangent of x/y.

Example command: atan2(.5,.5)

• Example Parameters:

• x is the one side of the triangle

• y is the second side of a triangle

• Returns atan(.5/.5) = .785

17.5. binary_list_to_integer(l)

Returns the value represented by the content of list l

Returns the integer value represented by the bools contained in the list l when evaluated as a signed
binary number.

Parameters

l: The list of bools to be converted to an integer. The bool at index 0 is evaluated as the least significant
bit. False represents a zero and True represents a one. If the list is empty this function returns 0. If the list
contains more than 32 bools, the function returns the signed integer value of the first 32 bools in the list.

Return Value

The integer value of the binary list content.

Example command: binary_list_to_integer([True,False,False,True])

Script Directory 79 PolyScope X

17. Module urmath

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

• Example Parameters:

• l represents the binary values 1001

• Returns 9

17.6. ceil(f)

Returns the smallest integer value that is not less than f

Rounds floating point number to the smallest integer no greater than f.

Parameters

f: floating point value

Return Value

rounded integer

Example command: ceil(1.43)

• Example Parameters:

• Returns 2

17.7. cos(f)

Returns the cosine of f

Returns the cosine of an angle of f radians.

Parameters

f: floating point value

Return Value

the cosine of f.

Example command: cos(1.57)

• Example Parameters:

• f is angle of 1.57 rad (90 deg)

• Returns 0.0

17.8. d2r(d)

Returns degrees-to-radians of d

Returns the radian value of ’d’ degrees. Actually: (d/180)*MATH_PI

Parameters

PolyScope X 80 Script Directory

17. Module urmath

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

d: The angle in degrees

Return Value

The angle in radians

Example command: d2r(90)

• Example Parameters:

• d angle in degrees

• Returns 1.57 angle in radians

17.9. floor(f)

Returns largest integer not greater than f

Rounds floating point number to the largest integer no greater than f.

Parameters

f: floating point value

Return Value

rounded integer

Example command: floor(1.53)

• Example Parameters:

• Returns 1

17.10. make_list(length, initial_value, capacity=length)

Create a new list of length "length" with the initial value of each element given by "initial_value" and assign
it to a variable.

The "initial_value" sets the type of the list. It can be a complex type like struct. If not provided, the
"capacity" will be defaulted to "length".

Creation list of list with this function is not supported (they are matrices in URScript).

Parameters

length: Number of elements which will be initialized

initial_value: Initial value of the elements

capacity: Maximum number of elements. List can be extended and contracted between 0, and capacity
(Optional default value equals to length)

Example command 1: list_1 = make_list(5, "a")

Equivalent to ["a", "a", "a", "a", "a"]

Script Directory 81 PolyScope X

17. Module urmath

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

• Example Parameters:

• length = 5

• initial_value = "a"

• capacity = 5

Example command 2: list_2 = make_list(10, 0, 100)

• Example Parameters:

• length = 10

• initial_value = 0

• capacity = 100

Example command 3: list_3 = make_list(0, 0, 100)

Create an initially empty list with the potential to hold 100 elements of integers.

• Example Parameters:

• length = 0

• initial_value = 0

• capacity = 100

17.11. get_list_length(v)

Returns the length of a list variable

The length of a list is the number of entries the list is composed of.

Parameters

v: A list variable

Return Value

An integer specifying the length of the given list

Example command: get_list_length([1,3,3,6,2])

• Example Parameters:

• v is the list 1,3,3,6,2

• Returns 5

17.12. integer_to_binary_list(x)

Returns the binary representation of x

Returns a list of bools as the binary representation of the signed integer value x.

Parameters

x: The integer value to be converted to a binary list.

PolyScope X 82 Script Directory

17. Module urmath

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

Return Value

A list of 32 bools, where False represents a zero and True represents a one. The bool at index 0 is the
least significant bit.

Example command: integer_to_binary_list(57)

• Example Parameters:

• x integer 57

• Returns binary list

17.13. interpolate_pose(p_from, p_to, alpha)

Linear interpolation of tool position and orientation.

When alpha is 0, returns p_from. When alpha is 1, returns p_to. As alpha goes from 0 to 1, returns a pose
going in a straight line (and geodetic orientation change) from p_from to p_to. If alpha is less than 0,
returns a point before p_from on the line. If alpha is greater than 1, returns a pose after p_to on the line.

Parameters

p_from: tool pose (pose)

p_to: tool pose (pose)

alpha: Floating point number

Return Value

interpolated pose (pose)

Example command: interpolate_pose(p[.2,.2,.4,0,0,0], p[.2,.2,.6,0,0,0], .5)

• Example Parameters:

• p_from = p[.2,.2,.4,0,0,0]

• p_to = p[.2,.2,.6,0,0,0]

• alpha = .5

• Returns p[.2,.2,.5,0,0,0]

17.14. inv(m)

Get the inverse of a matrix or pose

The matrix must be square and non singular.

Parameters

m:matrix or pose (spatial vector)

Return Value

inverse matrix or pose transformation (spatial vector)

Example command:

Script Directory 83 PolyScope X

17. Module urmath

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

• inv([[0,1,0],[0,0,1],[1,0,0]]) -> Returns [[0,0,1],[1,0,0],[0,1,0]]

• inv(p[.2,.5,.1,1.57,0,3.14]) -> Returns p[0.19324,0.41794,-
0.29662,1.23993,0.0,2.47985]

17.15. length(v)

Returns the length of a list variable or a string

The length of a list or string is the number of entries or characters it is composed of.

Parameters

v: A list or string variable

Return Value

An integer specifying the length of the given list or string

Example command: length("here I am")

• Example Parameters:

• v equals string "here I am"

• Returns 9

17.16. log(b, f)

Returns the logarithm of f to the base b

Returns the logarithm of f to the base b. If b or f is negative, or if b is 1 a runtime error is raised.

Parameters

b: floating point value

f: floating point value

Return Value

the logarithm of f to the base of b.

Example command: log(10.,4.)

• Example Parameters:

• b is base 10

• f is log of 4

• Returns 0.60206

PolyScope X 84 Script Directory

17. Module urmath

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

17.17. norm(a)

Returns the norm of the argument

The argument can be one of four different types:

Pose: In this case the euclidian norm of the pose is returned.

Float: In this case fabs(a) is returned.

Int: In this case abs(a) is returned.

List: In this case the euclidian norm of the list is returned, the list elements must be numbers.

Parameters

a: Pose, float, int or List

Return Value

norm of a

Example command:

• norm(-5.3) -> Returns 5.3

• norm(-8) -> Returns 8

• norm(p[-.2,.2,-.2,-1.57,0,3.14]) -> Returns 3.52768

17.18. normalize(v)

Returns the normalized form of a list of floats

Except for the case of all zeroes, the normalized form corresponds to the unit vector in the direction of v.

Throws an exception if the sum of all squared elements is zero.

Parameters

v: List of floats

Return Value

normalized form of v

Example command:

• normalize([1, 0, 0]) -> Returns [1, 0, 0]

• normalize([0, 5, 0]) -> Returns [0, 1, 0]

• normalize([0, 1, 1]) -> Returns [0, 0.707, 0.707]

17.19. point_dist(p_from, p_to)

Point distance

Script Directory 85 PolyScope X

17. Module urmath

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

Parameters

p_from: tool pose (pose)

p_to: tool pose (pose)

Return Value

Distance between the two tool positions (without considering rotations)

Example command: point_dist(p[.2,.5,.1,1.57,0,3.14], p[.2,.5,.6,0,1.57,3.14])

• Example Parameters:

• p_from = p[.2,.5,.1,1.57,0,3.14] -> The first point

• p_to = p[.2,.5,.6,0,1.57,3.14] -> The second point

• Returns distance between the points regardless of rotation

17.20. pose_add(p_1, p_2)

Pose addition

Both arguments contain three position parameters (x, y, z) jointly called P, and three rotation parameters
(R_x, R_y, R_z) jointly called R. This function calculates the result x_3 as the addition of the given poses
as follows:

p_3.P = p_1.P + p_2.P

p_3.R = p_1.R * p_2.R

Parameters

p_1: tool pose 1(pose)

p_2: tool pose 2 (pose)

Return Value

Sum of position parts and product of rotation parts (pose)

Example command: pose_add(p[.2,.5,.1,1.57,0,0], p[.2,.5,.6,1.57,0,0])

• Example Parameters:

• p_1 = p[.2,.5,.1,1.57,0,0] -> The first point

• p_2 = p[.2,.5,.6,1.57,0,0] -> The second point

• Returns p[0.4,1.0,0.7,3.14,0,0]

17.21. pose_dist(p_from, p_to)

Pose distance

Parameters

p_from: tool pose (pose)

PolyScope X 86 Script Directory

17. Module urmath

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

p_to: tool pose (pose)

Return Value

distance

Example command: pose_dist(p[.2,.5,.1,1.57,0,3.14], p[.2,.5,.6,0,1.57,3.14])

• Example Parameters:

• p_from = p[.2,.5,.1,1.57,0,3.14] -> The first point

• p_to = p[.2,.5,.6,0,1.57,3.14] -> The second point

• Returns distance between two poses including rotation

17.22. pose_inv(p_from)

Get the inverse of a pose

Parameters

p_from: tool pose (spatial vector)

Return Value

inverse tool pose transformation (spatial vector)

Example command: pose_inv(p[.2,.5,.1,1.57,0,3.14])

• Example Parameters:

• p_from = p[.2,.5,.1,1.57,0,3.14] -> The point

• Returns p[0.19324,0.41794,-0.29662,1.23993,0.0,2.47985]

17.23. pose_sub(p_to, p_from)

Pose subtraction

Parameters

p_to: tool pose (spatial vector)

p_from: tool pose (spatial vector)

Return Value

tool pose transformation (spatial vector)

Example command: pose_sub(p[.2,.5,.1,1.57,0,0], p[.2,.5,.6,1.57,0,0])

• Example Parameters:

• p_1 = p[.2,.5,.1,1.57,0,0] -> The first point

• p_2 = p[.2,.5,.6,1.57,0,0] -> The second point

• Returns p[0.0,0.0,-0.5,0.0,.0.,0.0]

Script Directory 87 PolyScope X

17. Module urmath

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

17.24. pose_trans(p_from, p_from_to)

Pose transformation

The first argument, p_from, is used to transform the second argument, p_from_to, and the result is then
returned. This means that the result is the resulting pose, when starting at the coordinate system of p_
from, and then in that coordinate system moving p_from_to.

This function can be seen in two different views. Either the function transforms, that is translates and
rotates, p_from_to by the parameters of p_from. Or the function is used to get the resulting pose, when
first making a move of p_from and then from there, a move of p_from_to.

If the poses were regarded as transformation matrices, it would look like:

T_world->to = T_world->from * T_from->to T_x->to = T_x->from * T_from->to

Parameters

p_from: starting pose (spatial vector)

p_from_to: pose change relative to starting pose (spatial vector)

Return Value

resulting pose (spatial vector)

Example command: pose_trans(p[.2,.5,.1,1.57,0,0], p[.2,.5,.6,1.57,0,0])

• Example Parameters:

• p_1 = p[.2,.5,.1,1.57,0,0] → The first point

• p_2 = p[.2,.5,.6,1.57,0,0] → The second point

• Returns p[0.4,-0.0996,0.60048,3.14,0.0,0.0]

17.25. pow(base, exponent)

Returns base raised to the power of exponent

Returns the result of raising base to the power of exponent. If base is negative and exponent is not an
integral value, or if base is zero and exponent is negative, a runtime error is raised.

Parameters

base: floating point value

exponent: floating point value

Return Value

base raised to the power of exponent

Example command: pow(5.,3)

• Example Parameters:

• Base = 5

• Exponent = 3

• Returns 125.

PolyScope X 88 Script Directory

17. Module urmath

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

17.26. r2d(r)

Returns radians-to-degrees of r

Returns the degree value of ’r’ radians.

Parameters

r: The angle in radians

Return Value

The angle in degrees

Example command: r2d(1.57)

• Example Parameters:

• r 1.5707 rad

• Returns 90 deg

17.27. random()

Random Number

Return Value

pseudo-random number between 0 and 1 (float)

17.28. rotvec2rpy(rotation_vector)

Returns RPY vector corresponding to rotation_vector

Returns the RPY vector corresponding to ’rotation_vector’ where the rotation vector is the axis of rotation
with a length corresponding to the angle of rotation in radians.

Parameters

rotation_vector: The rotation vector (Vector3d) in radians, also called the Axis-Angle vector (unit-
axis of rotation multiplied by the rotation angle in radians).

Return Value

The RPY vector (Vector3d) in radians, describing a roll-pitch-yaw sequence of extrinsic rotations about the
X-Y-Z axes, (corresponding to intrinsic rotations about the Z-Y’-X” axes). In matrix form the RPY vector is
defined as Rrpy = Rz(yaw)Ry(pitch)Rx(roll).

Example command: rotvec2rpy([3.14,1.57,0])

• Example Parameters:

• rotation_vector = [3.14,1.57,0] -> rx=3.14, ry=1.57, rz=0

• Returns [-2.80856, -0.16202, 0.9] -> roll=-2.80856, pitch=-0.16202, yaw=0.9

Script Directory 89 PolyScope X

17. Module urmath

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

17.29. rpy2rotvec(rpy_vector)

Returns rotation vector corresponding to rpy_vector

Returns the rotation vector corresponding to ’rpy_vector’ where the RPY (roll-pitch-yaw) rotations are
extrinsic rotations about the X-Y-Z axes (corresponding to intrinsic rotations about the Z-Y’-X” axes).

Parameters

rpy_vector: The RPY vector (Vector3d) in radians, describing a roll-pitch-yaw sequence of extrinsic
rotations about the X-Y-Z axes, (corresponding to intrinsic rotations about the Z-Y’-X” axes). In matrix form
the RPY vector is defined as Rrpy = Rz(yaw)Ry(pitch)Rx(roll).

Return Value

The rotation vector (Vector3d) in radians, also called the Axis-Angle vector (unit-axis of rotation multiplied
by the rotation angle in radians).

Example command: rpy2rotvec([3.14,1.57,0])

• Example Parameters:

• rpy_vector = [3.14,1.57,0] -> roll=3.14, pitch=1.57, yaw=0

• Returns [2.22153, 0.00177, -2.21976] -> rx=2.22153, ry=0.00177, rz=-2.21976

17.30. sin(f)

Returns the sine of f

Returns the sine of an angle of f radians.

Parameters

f: floating point value

Return Value

the sine of f.

Example command: sin(1.57)

• Example Parameters:

• f is angle of 1.57 rad (90 deg)

• Returns 1.0

17.31. size(v)

Returns the size of a matrix variable, the length of a list or string variable

Parameters

v: A matrix, list or string variable

Return Value

PolyScope X 90 Script Directory

17. Module urmath

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

Given a list or a string the length is returned as an integer. Given a matrix the size is returned as a list of
two numbers representing the number of rows and columns, respectively.

Example command:

• size("here I am") -> Returns 9

• size([1,2,3,4,5]) -> Returns 5

• size([[1,2],[3,4],[5,6]]) -> Returns [3,2]

17.32. sqrt(f)

Returns the square root of f

Returns the square root of f. If f is negative, a runtime error is raised.

Parameters

f: floating point value

Return Value

the square root of f.

Example command: sqrt(9)

• Example Parameters:

• f = 9

• Returns 3

17.33. tan(f)
Returns the tangent of f

Returns the tangent of an angle of f radians.

Parameters

f: floating point value

Return Value

the tangent of f.

Example command: tan(.7854)

• Example Parameters:

• f is angle of .7854 rad (45 deg)

• Returns 1.0

Script Directory 91 PolyScope X

17. Module urmath

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

17.34. transpose(m)

Get the transpose of a matrix

Parameters

m:matrix or an array

Return Value

transposed matrix or array

Example command:

transpose([[1,2],[3,4],[5,6]]) -> Returns [[1,3,5],[2,4,6]]

transpose([1,2,3]) -> Returns [[1],[2],[3]]

transpose([[1],[2],[3]]) -> Returns [1,2,3]

17.35. wrench_trans(T_from_to, w_from)

Wrench transformation

Move the point of view of a wrench.

Note: Transforming wrenches is not as trivial as transforming poses as the torque scales with the length of
the translation.

w_to = T_from->to * w_from

Parameters

T_from_to: The transformation to the new point of view (Pose)

w_from: wrench to transform in list format [F_x, F_y, F_z, M_x, M_y, M_z]

Return Value

resulting wrench, w_to in list format [F_x, F_y, F_z, M_x, M_y, M_z]

PolyScope X 92 Script Directory

17. Module urmath

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

18. Module interfaces

18.1. enable_external_ft_sensor(enable, sensor_
mass=0.0, sensor_measuring_offset=[0.0, 0.0, 0.0],
sensor_cog=[0.0, 0.0, 0.0])

Deprecated:

This function is used for enabling and disabling the use of external F/T measurements in the controller. Be
aware that the following function is impacted:

• force_mode

• screw_driving

• freedrive_mode

The RTDE interface shall be used for feeding F/T measurements into the real-time control loop of the
robot using input variable external_force_torque of type VECTOR6D. If no other RTDE watchdog
has been configured (using script function rtde_set_watchdog), a default watchdog will be set to a
10Hz minimum update frequency when the external F/T sensor functionality is enabled. If the update
frequency is not met the robot program will pause.

Parameters

enable: enable or disable feature (bool)

sensor_mass:mass of the sensor in kilograms (float)

sensor_measuring_offset: [x, y, z] measuring offset of the sensor in meters relative to the tool
flange frame

sensor_cog: [x, y, z] center of gravity of the sensor in meters relative to the tool flange frame

Deprecated

When using this function, the sensor position is applied such that the resulting torques are computed with
opposite sign. New programs should use ft_rtde_input_enable in place of this.

Notes:

• The TCP Configuration in the installation must also include the weight and offset contribution of the
sensor.

• Only the enable parameter is required, sensor mass, offset and center of gravity are optional (zero
if not provided).

Example command: Please refer to ft_rtde_input_enable for some examples of usage

Script Directory 93 PolyScope X

18. Module interfaces

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

18.2. ft_rtde_input_enable(enable, sensor_mass=0.0,
sensor_measuring_offset=[0.0, 0.0, 0.0], sensor_cog=
[0.0, 0.0, 0.0])

This function is used for enabling and disabling the use of external F/T measurements in the controller. Be
aware that the following function is impacted:

• force_mode

• screw_driving

• freedrive_mode

The RTDE interface shall be used for feeding F/T measurements into the real-time control loop of the
robot using input variable external_force_torque of type VECTOR6D. If no other RTDE watchdog
has been configured (using script function rtde_set_watchdog), a default watchdog will be set to a
10Hz minimum update frequency when the external F/T sensor functionality is enabled. If the update
frequency is not met the robot program will pause.

Parameters

enable: enable or disable feature (bool)

sensor_mass:mass of the sensor in kilograms (float)

sensor_measuring_offset: [x, y, z] measuring offset of the sensor in meters relative to the tool
flange frame

sensor_cog: [x, y, z] center of gravity of the sensor in meters relative to the tool flange frame

Notes:

This function replaces the deprecated enable_external_ft_sensor.

The TCP Configuration in the installation must also include the weight and offset contribution of the
sensor.

Only the enable parameter is required; sensor mass, offset and center of gravity are optional
(zero if not provided).

Example command: ft_rtde_input_enable(True, 1.0, [0.1, 0.0, 0.0], [0.2, 0.1,
0.5])

• Example Parameters:

• enable -> Enabling the feed of an external F/T measurements in the controller.

• sensor_mass -> mass of F/T sensor is set to 1.0 Kg.

• sensor_measuring_offset -> sensor measuring offset is set to [0.1, 0.0, 0.0] m from
the tool flange in tool flange frame coordinates.

• sensor_cog -> Center of Gravity of the sensor is set to x=200 mm, y=100 mm, z=500
mm from the center of the tool flange in tool flange frame coordinates.

PolyScope X 94 Script Directory

18. Module interfaces

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

• ft_rtde_input_enable(True, 0.5)

• Example Parameters:

• enable S{rarr} Enabling the feed of an external F/T measurements in the
controller.

• sensor_mass S{rarr} mass of F/T sensor is set to 0.5 Kg.

• Both sensor measuring offset and sensor's center of gravity are zero.

• @example:

• C{ft_rtde_input_enable(False)}

• Disable the feed of external F/T measurements in the controller (no other
parameters required)

18.3. get_analog_in(n)

Deprecated: Get analog input signal level

Parameters

n: The number (id) of the input, integer: [0:3]

Return Value

float, The signal level in Amperes, or Volts

Deprecated: The get_standard_analog_in and get_tool_analog_in replace this function. Ports
2-3 should be changed to 0-1 for the latter function. This function might be removed in the next major
release.

Note: For backwards compatibility n:2-3 go to the tool analog inputs.

Example command: get_analog_in(1)

• Example Parameters:

• n is analog input 1

• Returns value of analog output #1

18.4. get_analog_out(n)

Deprecated: Get analog output signal level

Parameters

n: The number (id) of the output, integer: [0:1]

Return Value

float, The signal level in Amperes, or Volts

Deprecated: The get_standard_analog_out replaces this function. This function might be removed
in the next major release.

Example command: get_analog_out(1)

Script Directory 95 PolyScope X

18. Module interfaces

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

• Example Parameters:

• n is analog output 1

• Returns value of analog output #1

18.5. get_configurable_digital_in(n)

Get configurable digital input signal level

See also get_standard_digital_in and get_tool_digital_in.

Parameters

n: The number (id) of the input, integer: [0:7]

Return Value

boolean, The signal level.

Example command: get_configurable_digital_in(1)

• Example Parameters:

• n is configurable digital input 1

• Returns True or False

18.6. get_configurable_digital_out(n)

Get configurable digital output signal level

See also get_standard_digital_outand get_tool_digital_out.

Parameters

n: The number (id) of the output, integer: [0:7]

Return Value

boolean, The signal level.

Example command: get_configurable_digital_out(1)

• Example Parameters:

• n is configurable digital output 1

• R'eturns True or False

18.7. get_digital_in(n)

Deprecated: Get digital input signal level

Parameters

PolyScope X 96 Script Directory

18. Module interfaces

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

n: The number (id) of the input, integer: [0:9]

Return Value

boolean, The signal level.

Deprecated: The get_standard_digital_in and get_tool_digital_in replace this function.
Ports 8-9 should be changed to 0-1 for the latter function. This function might be removed in the next major
release.

Note: For backwards compatibility n:8-9 go to the tool digital inputs.

Example command: get_digital_in(1)

• Example Parameters:

• n is digital input 1

• Returns True or False

18.8. get_digital_out(n)

Deprecated: Get digital output signal level

Parameters

n: The number (id) of the output, integer: [0:9]

Return Value

boolean, The signal level.

Deprecated: The get_standard_digital_out and get_tool_digital_out replace this function.
Ports 8-9 should be changed to 0-1 for the latter function. This function might be removed in the next major
release.

Note: For backwards compatibility n:8-9 go to the tool digital outputs.

Example command: get_digital_out(1)

• Example Parameters:

• n is digital output 1

• Returns True or False

18.9. get_flag(n)

Flags behave like internal digital outputs. They keep information between program runs.

Parameters

n: The number (id) of the flag, integer: [0:31]

Return Value

Boolean, The stored bit.

Example command: get_flag(1)

Script Directory 97 PolyScope X

18. Module interfaces

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

• Example Parameters:

• n is flag number 1

• Returns True or False

18.10. get_rtde_value(key)

Returns the corresponding value of the supplied RTDE output field key.

This function retrieves an RTDE value from the RTDE output buffer, which also can be collected through a
client. The RTDE value is one time step behind, therefore it is suggested to make a sync() call, before
calling get_rtde_value(key).

Parameters

key: RTDE output field key of value to retrieve. See the complete list of available fields and their
corresponding field types:

www.universal-robots.com/articles/ur/interface-communication/real-time-data-exchange-rtde-guide/

Return Value

The type of the return value depends on the key parameter and can be one of the following:

• bool

• For RTDE field type: BOOL

• number - either int or float

• For RTDE field types: UINT8, UINT32, UINT64, INT32, DOUBLE

• fixed length list of numbers either int or float

• For RTDE field types: VECTOR3D, VECTOR6D, VECTOR6INT32, VECTOR6UINT32

Example command:get_rtde_value("target_qd")

• Example Parameters:

• key = "target_qd" → retrieve target joint velocities.

18.11. get_standard_analog_in(n)

Get standard analog input signal level

See also get_tool_analog_in.

Parameters

n: The number (id) of the input, integer: [0:1]

Return Value

float, The signal level in Amperes, or Volts

Example command: get_standard_analog_in(1)

PolyScope X 98 Script Directory

18. Module interfaces

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

https://www.universal-robots.com/articles/ur/interface-communication/real-time-data-exchange-rtde-guide/

• Example Parameters:

• n is standard analog input 1

• Returns value of standard analog input #1

18.12. get_standard_analog_out(n)

Get standard analog output signal level

Parameters

n: The number (id) of the output, integer: [0:1]

Return Value

float, The signal level in Amperes, or Volts

Example command: get_standard_analog_out(1)

• Example Parameters:

• n is standard analog output 1

• Returns value of standard analog output #1

18.13. get_standard_digital_in(n)

Get standard digital input signal level

See also get_configurable_digital_in and get_tool_digital_in.

Parameters

n: The number (id) of the input, integer: [0:7]

Return Value

boolean, The signal level.

Example command: get_standard_digital_in(1)

• Example Parameters:

• n is standard digital input 1

• Returns True or False

18.14. get_standard_digital_out(n)

Get standard digital output signal level

See also get_configurable_digital_out and get_tool_digital_out.

Parameters

Script Directory 99 PolyScope X

18. Module interfaces

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

n: The number (id) of the output, integer: [0:7]

Return Value

boolean, The signal level.

Example command: get_standard_digital_out(1)

• Example Parameters:

• n is standard digital output 1

• Returns True or False

18.15. get_tool_analog_in(n)

Get tool analog input signal level

See also get_standard_analog_in.

Parameters

n: The number (id) of the input, integer: [0:1]

Return Value

float, The signal level in Amperes, or Volts

Example command: get_tool_analog_in(1)

• Example Parameters:

• n is tool analog input 1

• Returns value of tool analog input #1

18.16. get_tool_digital_in(n)

Get tool digital input signal level

See also get_configurable_digital_in and get_standard_digital_in.

Parameters

n: The number (id) of the input, integer: [0:1]

Return Value

boolean, The signal level.

Example command: get_tool_digital_in(1)

• Example Parameters:

• n is tool digital input 1

• Returns True or False

PolyScope X 100 Script Directory

18. Module interfaces

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

18.17. get_tool_digital_out(n)

Get tool digital output signal level

See also get_standard_digital_out and get_configurable_digital_out.

Parameters

n: The number (id) of the output, integer: [0:1]

Return Value

boolean, The signal level.

Example command: get_tool_digital_out(1)

Example Parameters:

n is tool digital out 1

Returns True or False

18.18. modbus_add_signal(IP, slave_number, signal_
address, signal_type, signal_name, sequential_
mode=False, register_count=1)

Adds a new modbus signal for the controller to supervise. Expects no response. If the signal is an output
type, then until the first set_output_signal/register() command the function code will be 2/3, after the call it
will switch to 15/16.

Matrix of function codes used for accessing coils or discrete inputs:

Read Write

Signal type Single Coil Multiple
Coils

Single Coil Multiple Coils

0 = Digital input 2 2 - -

1 = Digital output 1 1 15 15

15 = Multiple digital
outputs

1 1 15 15

Matrix of function codes used for accessing coils or discrete inputs:

Read Write

Signal type Single
register

Multiple
registers

Single
register

Multiple
registers

2 = Register input 4 4 - -

3 = Register output 3 3 6 16

Script Directory 101 PolyScope X

18. Module interfaces

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

16 = Multiple register
outputs

3 3 16 16

>>> modbus_add_signal("172.140.17.11", 255, 5, 1, "output1")

Parameters

IP: A string specifying the IP address of the modbus unit to which the modbus signal is connected. The
IP can not be empty.

Note: Numerical IP addresses are recommended. DNS name resolution may lead to unexpected program
stops.

slave_number: An integer normally not used and set to 255, but is a free choice between 0 and 255.

signal_address: An integer specifying the address of the either the coil or the register that this new
signal should reflect. Consult the configuration of the modbus unit for this information. The value must be
greater or equal to 0.

signal_type: An integer specifying the type of signal to add. 0 = digital input, 1 = digital output, 2 =
register input, 3 = register output, 15 = multiple digital output, 16 = multiple register output. Note: this
function does not accept 23 = multiple read-write signal type.

signal_name: A string uniquely identifying the signal. If a string is supplied which is equal to an already
added signal, the new signal will replace the old one. The length of the string can not exceed 20
characters. The signal name cannot be empty.

sequential_mode: Setting to True forces the modbus client to wait for a response before sending the
next request. This mode is required by some fieldbus units (Optional).

register_count: Number of registers/coils accessed by the signal [1-123] (Optional, the default value
is 1).

Example command 1: modbus_add_signal("172.140.17.11", 255, 5, 1, "output1")

• Example Parameters:

• IP address = 172.140.17.11

• Slave number = 255

• Signal address = 5

• Signal type = 1 digital output

• Signal name = output 1

Example command 2: modbus_add_signal("172.140.17.11", 255, 5, 16, "output2",
False, 10)

• Example Parameters:

• IP address = 172.140.17.11

• Slave number = 255

• Signal address = 5

• Signal type = 16 multiple register output

• Signal name = output 2

• sequential_mode = False

• register_count = 10

PolyScope X 102 Script Directory

18. Module interfaces

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

18.19. modbus_add_rw_signal(IP, slave_number, read_
address, read_register_count, write_address, write_
register_count, signal_name, sequential_mode=False)

Adds a new modbus signal for the controller to supervise. This function will use the function code 23. The
read and write addresses can overlap. Until the first set_output_register() command the function code will
be 3, after the call it will switch to 23.

>>> modbus_add_rw_signal("172.140.17.11", 255, 5, 10, 15, 10, "output1")

Parameters

IP: A string specifying the IP address of the modbus unit to which the modbus signal is connected. The
IP can not be empty.

slave_number: An integer normally not used and set to 255, but is a free choice between 0 and 255.

read_address: An integer specifying the address of the first register that this new signal should read
from.

read_register_count: Number of registers to read [1-123].

write_address: An integer specifying the address of the first register that this new signal should write
to.

write_register_count: Number of registers to write [1-123].

signal_name: A string uniquely identifying the signal. If a string is supplied which is equal to an already
added signal, the new signal will replace the old one. The length of the string can not exceed 20
characters. The signal name cannot be empty.

sequential_mode: Setting to True forces the modbus client to wait for a response before sending the
next request. This mode is required by some fieldbus units (Optional).

Example command: modbus_add_rw_signal("172.140.17.11", 255, 5, 10, 15, 10
"output1")

This example will create a signal that cyclically reads 10 registers from addresses 5-14, an writes 10
registers to addresses 10-19 Signal will use Function Code 3 to read register until first time modbus_set_
register_output(...) is called. Afterwards Function Code 23 will be used to both read and write registers in
remote device.

• Example Parameters:

• IP address = 172.140.17.11

• Slave number = 255

• Signal read address = 5

• Signal read register count = 10

• Signal write address = 15

• Signal write register count = 10

• Signal name = output 1

Script Directory 103 PolyScope X

18. Module interfaces

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

18.20.modbus_delete_signal(signal_name)

Deletes the signal identified by the supplied signal name.

>>> modbus_delete_signal("output1")

Parameters

signal_name: A string equal to the name of the signal that should be deleted. The signal name can not
be empty.

Example command: modbus_delete_signal("output1")

• Example Parameters:

• Signal name = output1

18.21. modbus_get_signal_status(signal_name, is_
secondary_program=False)

Reads the current value(s) of a specific signal. If the modbus watchdog is active, this will return the last
valid value(s). No error will be thrown within the watchdog time. If needed, the modus_get_error() or the
modbus_get_time_since_signal_invalid() can be used to detected that the signal is in an error state before
the watchdog expires.

>>> modbus_get_signal_status("output1",False)

Parameters

signal_name: A string equal to the name of the signal for which the value should be gotten. Can not be
empty.

is_secondary_program: A boolean for internal use only. Must be set to False. (Optional, default is
False)

Return Value

An integer or a boolean. For digital signals: True or False. For register signals: The register value
expressed as an unsigned integer. If the signal was declared to have access for multiple registers/coild,
then the return value will be an array of unsigned integers / booleans. The length of the returned array is
equal to the register_count of the signal.

Example command: modbus_get_signal_status("output1")

Example Parameters:

• Signal name = output 1

• Is_secondary_program = False by default

PolyScope X 104 Script Directory

18. Module interfaces

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

18.22.modbus_send_custom_command(IP, slave_
number, function_code, data)

Sends a command specified by the user to the modbus unit located on the specified IP address. Cannot
be used to request data, since the response will not be received. The user is responsible for supplying
data which is meaningful to the supplied function code. The builtin function takes care of constructing the
modbus frame, so the user should not be concerned with the length of the command.

>>> modbus_send_custom_command("172.140.17.11",103,6,

>>> [17,32,2,88])

The above example sets the watchdog timeout on a Beckhoff BK9050 to 600 ms. That is done using the
modbus function code 6 (preset single register) and then supplying the register address in the first two
bytes of the data array ([17,32] = [0x1120]) and the desired register content in the last two bytes ([2,88] =
[0x0258] = dec 600).

Parameters

IP: A string specifying the IP address locating the modbus unit to which the custom command should be
send. Can not be empty.

slave_number: An integer specifying the slave number to use for the custom command. Must be
between [0-255].

function_code: An integer specifying the function code for the custom command.

data: An array of integers in which each entry must be a valid byte (0-255) value.

Example command: modbus_send_custom_command("172.140.17.11", 103, 6,
[17,32,2,88])

• Example Parameters:

• IP address = 172.140.17.11

• Slave number = 103

• Function code = 6

• Data = [17,32,2,88]

• Function code and data are specified by the manufacturer of the slave Modbus device
connected to the UR controller

18.23. modbus_set_digital_input_action(signal_name,
action)

Sets the selected digital input signal to either a "default" or "freedrive" action.

>>> modbus_set_digital_input_action("input1", "freedrive")

Parameters

signal_name: A string identifying a digital input signal that was previously added. Can not be empty.

action: The type of action. The action can either be "default" or "freedrive". Can not be empty. (string)

Script Directory 105 PolyScope X

18. Module interfaces

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

Example command: modbus_set_digital_input_action("input1", "freedrive")

• Example Parameters:

• Signal name = "input1"

• Action = "freedrive"

18.24.modbus_set_output_register(signal_name,
register_value, is_secondary_program=False)

Sets the output register(s) signal identified by the given name to the given value.

>>> modbus_set_output_register("output1",300,False)

Parameters

signal_name: A string identifying an output register signal that in advance has been added. Can not be
empty.

register_value: An integer which must be a valid word (0-65535) value or a list of integer values. The
list can not be empty. The size of the list must be less than 123 and must be equal or less to the signal's
declared register count. Note: if a shorter list is given as an input, then registers with greater indexes will
keep previous value

is_secondary_program: A boolean for internal use only. Must be set to False. (Optional, false by
default)

Example command 1: modbus_set_output_register("output1", 300, False)

• Example Parameters:

• Signal name = output1

• Register value = 300

• Is_secondary_program = False (Note: must be set to False)

Example command 2:

modbus_add_signal("127.0.0.1", 255, 0, 16, "output2", False, 10)

list_var:=[10,9,8,7,6,5,4,3,2,1]

modbus_set_output_register("output2", list_var)

• Example Parameters:

• Signal name = output2

• Register values = 10,9,8,7,6,5,4,3,2,1

• Is_secondary_program = False by default

PolyScope X 106 Script Directory

18. Module interfaces

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

18.25.modbus_set_output_signal(signal_name, digital_
value, is_secondary_program, False)

Sets the output digital signal(s) identified by the given name to the given value.

>>> modbus_set_output_signal("output2",True,False)

Parameters

signal_name: A string identifying an output digital signal that in advance has been added. Can not be
empty.

digital_value: A boolean to which value the signal will be set or a list of boolean values. The list can
not be empty. The size of the list must be less than 123 and must be equal or less to the signal's declared
register count. Note: if a shorter list is given as an input, then coils with greater indexes will keep previous
value

is_secondary_program: A boolean for internal use only. Must be set to False.

Example command 1: modbus_set_output_signal("output1", True, False)

• Example Parameters:

• Signal name = output1

• Digital value = True

• Is_secondary_program = False (Note: must be set to False)

Example command 2:

modbus_add_signal("127.0.0.1", 255, 0, 15, "output2", False, 5)

list_var:=[True, False, True, False, True]

modbus_set_output_signal("output2", list_var)

• Example Parameters:

• Signal name = output2

• Digital values = True, False, True, False, True

• Is_secondary_program = False by default.

18.26.modbus_set_signal_update_frequency(signal_
name, update_frequency)

Sets the frequency with which the robot will send requests to the Modbus controller to either read or write
the signal value.

>>> modbus_set_signal_update_frequency("output2",20)

Parameters

signal_name:A string identifying an output digital signal that in advance has been added. Can not be
empty.

update_frequency: An integer in the range 0-500 specifying the update frequency in Hz.

Script Directory 107 PolyScope X

18. Module interfaces

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

Note: The function accepts -1 and 0 as a valid input as a special value to create acyclic signals.

Note: If the input is 0 the signal will be acyclic.

Example command: modbus_set_signal_update_frequency("output2", 20)

• Example Parameters:

• Signal name = output2

• Signal update frequency = 20 Hz

18.27.modbus_get_error(signal_name)

Returns the current error state of the signal.

>>> modbus_get_error("output1")

Parameters

signal_name: A string equal to the name of the signal. The signal name can not be empty.

error_source: Selects the type of the returned error. Integer, 0 = combined, 1 = device error, 2 =
connection error (Optional, default is 0 = combined)

Return Value

32 bit integer

0 = No error, Device errors

1 = Device error - illegal function code

2 = Device error - illegal data access

3 = Device error - illegal data value

4 = Device error - server failure

5 = Device error - acknowledge exception

6 = Device error - server busy

10 = Device error - gateway problem

11 = Device error - gateway target failure

Connection errors

Values from 1-113, see details in https://en.wikipedia.org/wiki/Errno.h and
https://www.ibm.com/docs/en/db2/11.5?topic=message-tcpip-errors

NOTICE

If combined errors are requested, then the returned value's upper 2 bytes will store the
connection error, the lower 2 bytes will store the device errors. Example returned value:
0xFFFE0004 (dec:-131068) -> upper 0xFFFE = -2 Disconnected ; lower 0x0004 =
Device error - server failure

Example command: modbus_get_error("output1")

PolyScope X 108 Script Directory

18. Module interfaces

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

https://en.wikipedia.org/wiki/Errno.h
https://www.ibm.com/docs/en/db2/11.5?topic=message-tcpip-errors

• Example Parameters:

• Signal name = output1

18.28.modbus_get_time_since_signal_invalid(signal_
name)

Returns the time in seconds since the signal is invalid (has communication or device error).For input
signals function tells how long ago was last time when signal value was successfully read from remote
device. For output signals function tells how long ago was last time when signal value was successfully
written to remote device.

>>> modbus_get_time_since_signal_invalid("output1")

Parameters

signal_name: A string equal to the name of the signal. The signal name can not be empty.

Return Value

A float number representing the time in seconds since the signal is in a communication or device error.

Example command: modbus_get_time_since_signal_invalid("output1")

• Example Parameters:

• Signal name = output1

18.29.modbus_request_update_signal_value(signal_
name)

Request an update of the signal regardless of the used frequency.

>>> modbus_request_update_signal_value("output1")

Parameters

signal_name: A string equal to the name of the signal. The signal name can not be empty.

Example command: modbus_request_update_signal_value("output1")

• Example Parameters:

• Signal name = output1

Script Directory 109 PolyScope X

18. Module interfaces

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

18.30.modbus_reset_connection(connection_id, is_
blocking=True)

Tear down, and reconnect all signals to remote device. By default it will block as long as there are errors in
the connection.

>>> modbus_reset_connection("172.140.17.11")

Parameters

connection_id: A string specifying the IP address of the modbus unit to which the modbus signal is
connected. The IP can not be empty.

Example command: modbus_reset_connection("172.140.17.11")

Example Parameters:

• connection_id = 172.140.17.11

• is_blocking = True

18.31. modbus_set_signal_watchdog(signal_name, new_
timeout_in_sec)

Set tolerance for modbus errors (both communication, and device exceptions) as minimum time between
valid device responses. No error will be thrown within the watchdog time. If needed, the modus_get_error
() or the modbus_get_time_since_signal_invalid() can be used to detected that the signal is in an error
state before the watchdog expires.Default signal timeout is 2 seconds.

>>> modbus_set_signal_watchdog("signal1", 5)

Parameters

signal_name: A string identifying an output digital signal that in advance has been added. Can not be
empty.

new_timeout_in_sec: A number in range 0-300 representing seconds.

Example command: modbus_set_signal_watchdog("signal1", 10.5)

Example Parameters:

• signal_name = signal1

• new_timeout_in_sec = 10.5 seconds

18.32. read_input_boolean_register(address)

Reads the boolean from one of the input registers, which can also be accessed by a Field bus. Note, uses
it’s own memory space.

Parameters

PolyScope X 110 Script Directory

18. Module interfaces

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

address: Address of the register (0:127)

Return Value

The boolean value held by the register (True, False)

Note: The lower range of the boolean input registers [0:63] is reserved for FieldBus/PLC interface usage.
The upper range [64:127] cannot be accessed by FieldBus/PLC interfaces, since it is reserved for external
RTDE clients.

>>> bool_val = read_input_boolean_register(3)

Example command: read_input_boolean_register(3)

• Example Parameters:

• Address = input boolean register 3

18.33. read_input_float_register(address)

Reads the float from one of the input registers, which can also be accessed by a Field bus. Note, uses it’s
own memory space.

Parameters

address: Address of the register (0:47)

Return Value

The value held by the register (float)

Note: The lower range of the float input registers [0:23] is reserved for FieldBus/PLC interface usage. The
upper range [24:47] cannot be accessed by FieldBus/PLC interfaces, since it is reserved for external
RTDE clients.

>>> float_val = read_input_float_register(3)

Example command: read_input_float_register(3)

• Example Parameters:

• Address = input float register 3

18.34. read_input_integer_register(address)

Reads the integer from one of the input registers, which can also be accessed by a Field bus. Note, uses
it’s own memory space.

Parameters

address: Address of the register (0:47)

Return Value

The value held by the register [-2,147,483,648 : 2,147,483,647]

Script Directory 111 PolyScope X

18. Module interfaces

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

Note: The lower range of the integer input registers [0:23] is reserved for FieldBus/PLC interface usage.
The upper range [24:47] cannot be accessed by FieldBus/PLC interfaces, since it is reserved for external
RTDE clients.

>>> int_val = read_input_integer_register(3)

Example command: read_input_integer_register(3)

• Example Parameters:

• Address = input integer register 3

18.35. read_output_boolean_register(address)

Reads the boolean from one of the output registers, which can also be accessed by a Field bus. Note,
uses it’s own memory space.

Parameters

address: Address of the register (0:127)

Return Value

The boolean value held by the register (True, False)

Note: The lower range of the boolean output registers [0:63] is reserved for FieldBus/PLC interface usage.
The upper range [64:127] cannot be accessed by FieldBus/PLC interfaces, since it is reserved for external
RTDE clients.

>>> bool_val = read_output_boolean_register(3)

Example command: read_output_boolean_register(3)

• Example Parameters:

• Address = output boolean register 3

18.36. read_output_float_register(address)

Reads the float from one of the output registers, which can also be accessed by a Field bus. Note, uses it’s
own memory space.

Parameters

address: Address of the register (0:47)

Return Value

The value held by the register (float)

Note: The lower range of the float output registers [0:23] is reserved for FieldBus/PLC interface usage.
The upper range [24:47] cannot be accessed by FieldBus/PLC interfaces, since it is reserved for external
RTDE clients.

>>> float_val = read_output_float_register(3)

Example command: read_output_float_register(3)

PolyScope X 112 Script Directory

18. Module interfaces

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

• Example Parameters:

• Address = output float register 3

18.37. read_output_integer_register(address)

Reads the integer from one of the output registers, which can also be accessed by a Field bus. Note, uses
it’s own memory space.

Parameters

address: Address of the register (0:47)

Return Value

The int value held by the register [-2,147,483,648 : 2,147,483,647]

Note: The lower range of the integer output registers [0:23] is reserved for FieldBus/PLC interface usage.
The upper range [24:47] cannot be accessed by FieldBus/PLC interfaces, since it is reserved for external
RTDE clients.

>>> int_val = read_output_integer_register(3)

Example command: read_output_integer_register(3)

• Example Parameters:

• Address = output integer register 3

18.38. read_port_bit(address)

Reads one of the ports, which can also be accessed by Modbus clients

>>> boolval = read_port_bit(3)

Parameters

address: Address of the port (See port map on Support site, page "Modbus Server")

Return Value

The value held by the port (True, False)

Example command: read_port_bit(3)

• Example Parameters:

• Address = port bit 3

18.39. read_port_register(address)

Reads one of the ports, which can also be accessed by Modbus clients

>>> intval = read_port_register(3)

Script Directory 113 PolyScope X

18. Module interfaces

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

Parameters

address: Address of the port (See port map on Support site, page "Modbus Server")

Return Value

The signed integer value held by the port (-32768 : 32767)

Example command: read_port_register(3)

Example Parameters:

Address = port register 3

18.40. rpc_factory(type, url)

Creates a new Remote Procedure Call (RPC) handle. Please read the subsection ef{Remote Procedure
Call (RPC)} for a more detailed description of RPCs.

>>> proxy = rpc_factory("xmlrpc", "http://127.0.0.1:8080/RPC2")

Parameters

type: The type of RPC backed to use. Currently only the "xmlrpc" protocol is available.

url: The URL to the RPC server. Currently two protocols are supported: pstream and http. The pstream
URL looks like "<ip-address>:<port>", for instance "127.0.0.1:8080" to make a local connection on port
8080. A http URL generally looks like "http://<ip-address>:<port>/<path>", whereby the <path> depends
on the setup of the http server. In the example given above a connection to a local Python webserver on
port 8080 is made, which expects XMLRPC calls to come in on the path "RPC2".

Return Value

A RPC handle with a connection to the specified server using the designated RPC backend. If the server is
not available the function and program will fail. Any function that is made available on the server can be
called using this instance. For example "bool isTargetAvailable(int number, ...)" would be
"proxy.isTargetAvailable(var_1, ...)", whereby any number of arguments are supported (denoted by the
...).

Note: Giving the RPC instance a good name makes programs much more readable (i.e. "proxy" is not a
very good name).

Example command: rpc_factory("xmlrpc", "http://127.0.0.1:8080/RPC2")

• Example Parameters:

• type = xmlrpc

• url = http://127.0.0.1:8080/RPC2

PolyScope X 114 Script Directory

18. Module interfaces

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

18.41. rtde_set_watchdog(variable_name,min_
frequency, action=’pause’)

This function will activate a watchdog for a particular input variable to the RTDE. When the watchdog did
not receive an input update for the specified variable in the time period specified by min_frequency (Hz),
the corresponding action will be taken. All watchdogs are removed on program stop.

>>> rtde_set_watchdog("input_int_register_0", 10, "stop")

Parameters

variable_name: Input variable name (string), as specified by the RTDE interface

min_frequency: The minimum frequency (float) an input update is expected to arrive.

action: Optional: Either "ignore", "pause" or "stop" the program on a violation of the minimum frequency.
The default action is "pause".

Return Value

None

Note: Only one watchdog is necessary per RTDE input package to guarantee the specified action on
missing updates.

Example command: rtde set watchdog("input int register 0" , 10, "stop")

• Example Parameters:

• variable name = input int register 0

• min frequency = 10 hz

• action = stop the program

18.42. set_analog_inputrange(port, range)

Deprecated: Set range of analog inputs

Port 0 and 1 is in the controller box, 2 and 3 is in the tool connector.

Parameters

port: analog input port number, 0,1 = controller, 2,3 = tool

range: Controller analog input range 0: 0-5V (maps automatically onto range 2) and range 2: 0-10V.

range: Tool analog input range 0: 0-5V (maps automatically onto range 1), 1: 0-10V and 2: 4-20mA.

Deprecated: The set_standard_analog_input_domain and set_tool_analog_input_domain
replace this function. Ports 2-3 should be changed to 0-1 for the latter function. This function might be
removed in the next major release.

Note: For Controller inputs ranges 1: -5-5V and 3: -10-10V are no longer supported and will show an
exception in the GUI.

Script Directory 115 PolyScope X

18. Module interfaces

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

18.43. set_analog_out(n, f)

Deprecated: Set analog output signal level

Parameters

n: The number (id) of the output, integer: [0:1]

f: The relative signal level [0;1] (float)

Deprecated: The set_standard_analog_out replaces this function.

This function might be removed in the next major release.

Example command: set_analog_out(1,0.5)

• Example Parameters:

• n is standard analog output port 1

• f = 0.5, that corresponds to 5V (or 12mA depending on domain setting) on the output port

18.44. set_configurable_digital_out(n, b)

Set configurable digital output signal level

See also set_standard_digital_out and set_tool_digital_out.

Parameters

n: The number (id) of the output, integer: [0:7]

b: The signal level. (boolean)

Example command: set_configurable_digital_out(1,True)

• Example Parameters:

• n is configurable digital output 1

• b = True

18.45. set_digital_out(n, b)

Deprecated: Set digital output signal level

Parameters

n: The number (id) of the output, integer: [0:9]

b: The signal level. (boolean)

Deprecated: The set_standard_digital_out and set_tool_digital_out replace this function.
Ports 8-9 should be changed to 0-1 for the latter function. This function might be removed in the next major
release.

Example command: set_digital_out(1,True)

PolyScope X 116 Script Directory

18. Module interfaces

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

• Example Parameters:

• n is digital output 1

• b = True

18.46. set_flag(n, b)

Flags behave like internal digital outputs. They keep information between program runs.

Parameters

n: The number (id) of the flag, integer: [0:31]

b: The stored bit. (boolean)

Example command: set_flag(1,True)

• Example Parameters:

• n is flag number 1

• b = True will set the bit to True

18.47. set_standard_analog_out(n, f)

Set standard analog output signal level

Parameters

n: The number (id) of the output, integer: [0:1]

f: The relative signal level [0;1] (float)

Example command: set_standard_analog_out(1,1.0)

• Example Parameters:

• n is standard analog output port 1

• f = 1.0, that corresponds to 10V (or 20mA depending on domain setting) on the output port

18.48. set_standard_digital_out(n, b)

Set standard digital output signal level

See also set_configurable_digital_out and set_tool_digital_out.

Parameters

n: The number (id) of the output, integer: [0:7]

b: The signal level. (boolean)

Example command: set_standard_digital_out(1,True)

Script Directory 117 PolyScope X

18. Module interfaces

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

• Example Parameters:

• n is standard digital output 1

• f = True

18.49. set_tool_digital_out(n, b)

Set tool digital output signal level

See also set_configurable_digital_out and set_standard_digital_out.

Parameters

n: The number (id) of the output, integer: [0:1]

b: The signal level. (boolean)

Example command: set_tool_digital_out(1,True)

• Example Parameters:

• n is tool digital output 1

• b = True

18.50. set_tool_communication(enabled, baud_rate,
parity, stop_bits,

This function will activate or deactivate the ’Tool Communication Interface’ (TCI). The TCI will enable
communication with a external tool via the robots analog inputs hereby avoiding external wiring.

>>> set_tool_communication(True, 115200, 1, 2, 1.0, 3.5)

Parameters

enabled: Boolean to enable or disable the TCI (string). Valid values: True (enable), False (disable)

baud_rate: The used baud rate (int). Valid values: 9600, 19200, 38400, 57600, 115200, 1000000,
2000000, 5000000.

parity: The used parity (int). Valid values: 0 (none), 1 (odd), 2 (even).

stop_bits: The number of stop bits (int). Valid values: 1, 2.

rx_idle_chars: Amount of chars the RX unit in the tool should wait before marking a message as over /
sending it to the PC (float). Valid values: min=1.0 max=40.0.

tx_idle_chars: Amount of chars the TX unit in the tool should wait before starting a new transmission
since last activity on bus (float). Valid values: min=0.0 max=40.0.

Return Value

None

Note:

Enabling this feature will disable the robot tool analog inputs.

PolyScope X 118 Script Directory

18. Module interfaces

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

Example command:

set_tool_communication(True, 115200, 1, 2, 1.0, 3.5)

• Example Parameters:

• enabled = True

• baud rate = 115200

• parity = ODD

• stop bits = 2

• rx idle time = 1.0

• tx idle time = 3.5

18.51. set_tool_digital_output_mode (n,mode)

Sets the output mode of the tool output pin.

Parameters

n: The number (id) of the output, integer: [0:1]

Mode: The pin mode.

Integer: [1:3]

• 1=Sinking/NPN

• 2=Sourcing/PNP

• 3=Push-Pull

Example command: set_tool_digital_output_mode(0,2)

• Example Parameters:

• 0 is digital output pin 0.

• 2 is pin mode sourcing/PNP.

The pin sources current when it is set to 1.

The pin is high impedance when it is set to 0.

18.52. set_tool_output_mode (mode)

Sets the tool digital output mode.

Parameters

Mode: 1=power (dual pin) mode.

Example command: set_tool_output_mode(1)

Script Directory 119 PolyScope X

18. Module interfaces

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

• Example Parameters:

• 1 is the power (dual pin) mode.

The digital outputs are used as extra supply

18.53. set_tool_voltage(voltage)

Sets the voltage level for the power supply that delivers power to the connector plug in the tool flange of
the robot. The votage can be 0, 12 or 24 volts.

Parameters

voltage: The voltage (as an integer) at the tool connector, integer: 0, 12 or 24.

Example command: set_tool_voltage(24)

• Example Parameters:

• voltage = 24 volts

18.54. socket_close(socket_name=’socket_0’)

Closes TCP/IP socket communication

Closes down the socket connection to the server.

>>> socket_comm_close()

Parameters

socket_name: Name of socket (string)

Example command: socket_close(socket_name="socket_0")

• Example Parameters:

• socket_name = socket_0

18.55. socket_get_var(name, socket_name=’socket_0’)

Reads an integer from the server

Sends the message "GET <name>\n" through the socket, expects the response "<name> <int>\n" within 2
seconds. Returns 0 after timeout

Parameters

name: Variable name (string)

socket_name: Name of socket (string)

Return Value

PolyScope X 120 Script Directory

18. Module interfaces

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

an integer from the server (int), 0 is the timeout value

Example command: x_pos = socket_get_var("POS_X")

Sends: GET POS_X\n to socket_0, and expects response within 2s

• Example Parameters:

• name = POS_X -> name of variable

• socket_name = default: socket_0

18.56. socket_open(address, port, socket_
name=’socket_0’)

Open TCP/IP ethernet communication socket

Attempts to open a socket connection, times out after 2 seconds.

Parameters

address: Server address (string)

port: Port number (int)

socket_name: Name of socket (string)

Return Value

False if failed, True if connection succesfully established

Note: The used network setup influences the performance of client/server communication. For instance,
TCP/IP communication is buffered by the underlying network interfaces.

• Example command: socket_open("192.168.5.1", 50000, "socket_10")

• Example Parameters:

• address = 192.168.5.1

• port = 50000

• socket_name = socket_10

18.57. socket_read_ascii_float(number, socket_
name=’socket_0’, timeout=2)

Reads a number of ascii formatted floats from the socket. A maximum of 30 values can be read in one
command.

The format of the numbers should be in parantheses, and seperated by ",". An example list of four
numbers could look like "(1.414 , 3.14159, 1.616, 0.0)".

The returned list contains the total numbers read, and then each number in succession. For example a
read_ascii_float on the example above would return [4, 1.414, 3.14159, 1.616, 0.0].

Script Directory 121 PolyScope X

18. Module interfaces

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

A failed read or timeout will return the list with 0 as first element and then "Not a number (nan)" in the
following elements (ex. [0, nan, nan, nan] for a read of three numbers).

Parameters

number: The number of variables to read (int)

socket_name: Name of socket (string)

timeout: The number of seconds until the read action times out (float). A timeout of 0 or negative
number indicates that the function should not return until a read is completed.

Return Value

A list of numbers read (length=number+1, list of floats)

• Example command: list_of_four_floats = socket_read_ascii_float(4,"socket_
10")

• Example Parameters:

• number = 4→ Number of floats to read

• socket_name = socket_10

• returns list

18.58. socket_read_binary_integer(number, socket_
name=’socket_0’, timeout=2)

Reads a number of 32 bit integers from the socket. Bytes are in network byte order. A maximum of 30
values can be read in one command.

Returns (for example) [3,100,2000,30000], if there is a timeout or the reply is invalid, [0,-1,-1,-1] is
returned, indicating that 0 integers have been read

Parameters

number: The number of variables to read (int)

socket_name: Name of socket (string)

timeout: The number of seconds until the read action times out (float). A timeout of 0 or negative
number indicates that the function should not return until a read is completed.

Return Value

A list of numbers read (length=number+1, list of ints)

Example command: list_of_ints = socket_read_binary_integer(4,"socket_10")

• Example Parameters:

• number = 4 -> Number of integers to read

• socket_name = socket_10

PolyScope X 122 Script Directory

18. Module interfaces

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

18.59. socket_read_byte_list(number, socket_
name=’socket_0’, timeout=2)

Reads a number of bytes from the socket. A maximum of 30 values can be read in one command.

Returns (for example) [3,100,200,44], if there is a timeout or the reply is invalid, [0,-1,-1,-1] is returned,
indicating that 0 bytes have been read

Parameters

number: The number of bytes to read (int)

socket_name: Name of socket (string)

timeout: The number of seconds until the read action times out (float). A timeout of 0 or negative
number indicates that the function should not return until a read is completed.

Return Value

A list of numbers read (length=number+1, list of ints)

Example command: list_of_bytes = socket_read_byte_list(4,"socket_10")

• Example Parameters:

• number = 4 -> Number of byte variables to read

• socket_name = socket_10

18.60. socket_read_line(socket_name=’socket_0’,
timeout=2)

Deprecated: Reads the socket buffer until the first "\r\n" (carriage return and newline) characters or just the
"\n" (newline) character, and returns the data as a string. The returned string will not contain the "\n" nor
the "\r\n" characters.

Returns (for example) "reply from the server:", if there is a timeout or the reply is invalid, an empty line is
returned (""). You can test if the line is empty with an if-statement.

>>> if(line_from_server) :

>>> popup("the line is not empty")

>>> end

Parameters

socket_name: Name of socket (string)

timeout: The number of seconds until the read action times out (float). A timeout of 0 or negative
number indicates that the function should not return until a read is completed.

Return Value

One line string

Script Directory 123 PolyScope X

18. Module interfaces

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

Deprecated: The socket_read_string replaces this function. Set flag "interpret_escape" to "True" to
enable the use of escape sequences "\n" "\r" and "\t" as a prefix or suffix.

Example command: line_from_server = socket_read_line("socket_10")

• Example Parameters:

• socket_name = socket_10

18.61. socket_read_string(socket_name=’socket_0’,
prefix =’’, suffix =’’, interpret_escape=’False’, timeout=2)

Reads all data from the socket and returns the data as a string.

Returns (for example) "reply from the server:\n Hello World". if there is a timeout or the reply is invalid, an
empty string is returned (""). You can test if the string is empty with an if-statement.

Maxium length of received string including termination characters is limited to 1024 characters.

>>> if(string_from_server) :

>>> popup("the string is not empty")

>>> end

The optional parameters "prefix" and "suffix", can be used to express what is extracted from the socket.
The "prefix" specifies the start of the substring (message) extracted from the socket. The data up to the
end of the "prefix" will be ignored and removed from the socket. The "suffix" specifies the end of the
substring (message) extracted from the socket. Any remaining data on the socket, after the "suffix", will be
preserved.

By using the "prefix" and "suffix" it is also possible send multiple string to the controller at once, because
the suffix defines where the message ends. E.g. sending ">hello<>world<" and calling this script function
with the prefix=">" and suffix="<".

Note that leading spaces in the prefix and suffix strings are ignored in the current software and may cause
communication errors in future releases.

The optional parameter "interpret_escape" can be used to allow the use of escape sequences "\n", "\t" and
"\r" as part of the prefix or suffix.

Parameters

socket_name: Name of socket (string)

prefix: Defines a prefix (string)

suffix: Defines a suffix (string)

interpret_escape: Enables the interpretation of escape sequences (bool)

timeout: The number of seconds until the read action times out (float). A timeout of 0 or negative
number indicates that the function should not return until a read is completed.

Return Value

PolyScope X 124 Script Directory

18. Module interfaces

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

String

Example command: string_from_server = socket_read_string("socket_
10",prefix=">",suffix="<")

18.62. socket_send_byte(value, socket_name=’socket_
0’)

Sends a byte to the server

Sends the byte <value> through the socket. Expects no response. Can be used to send special ASCII
characters: 10 is newline, 2 is start of text, 3 is end of text.

Parameters

value: The number to send (byte)

socket_name: Name of socket (string)

Return Value

a boolean value indicating whether the send operation was successful

Example command: socket_send_byte(2,"socket_10")

• Example Parameters:

• value = 2

• socket_name = socket_10

• Returns True or False (sent or not sent)

18.63. socket_send_int(value, socket_name=’socket_0’)

Sends an int (int32_t) to the server

Sends the int <value> through the socket. Send in network byte order. Expects no response.

Parameters

value: The number to send (int)

socket_name: Name of socket (string)

Return Value

a boolean value indicating whether the send operation was successful

Example command: socket_send_int(2,"socket_10")

• Example Parameters:

• value = 2

• socket_name = socket_10

• Returns True or False (sent or not sent)

Script Directory 125 PolyScope X

18. Module interfaces

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

18.64. socket_send_line(str, socket_name=’socket_0’)

Sends a string with a newline character to the server - useful for communicating with the UR dashboard
server

Sends the string <str> through the socket in ASCII coding. Expects no response.

Parameters

str: The string to send (ascii)

socket_name: Name of socket (string)

Return Value

a boolean value indicating whether the send operation was successful

Example command: socket_send_line("hello","socket_10")

Sends: hello\n to socket_10

• Example Parameters:

• str = hello

• socket_name = socket_10

• Returns True or False (sent or not sent)

18.65. socket_send_string(str, socket_name=’socket_0’)

Sends a string to the server

Sends the string <str> through the socket in ASCII coding. Expects no response.

Parameters

str: The string to send (ascii)

socket_name: Name of socket (string)

Return Value

a boolean value indicating whether the send operation was successful

Example command: socket_send_string("hello","socket_10")

Sends: hello to socket_10

• Example Parameters:

• str = hello

• socket_name = socket_10

• Returns True or False (sent or not sent)

PolyScope X 126 Script Directory

18. Module interfaces

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

18.66. socket_set_var(name, value, socket_
name=’socket_0’)

Sends an integer to the server

Sends the message "SET <name> <value>\n" through the socket. Expects no response.

Parameters

name: Variable name (string)

value: The number to send (int)

socket_name: Name of socket (string)

Example command: socket_set_var("POS_Y",2200,"socket_10")

Sends string: SET POS_Y 2200\n to socket_10

• Example Parameters:

• name = POS_Y -> name of variable

• value = 2200

• socket_name = socket_10

18.67. write_output_boolean_register(address, value)

Writes the boolean value into one of the output registers, which can also be accessed by a Field bus. Note,
uses it’s own memory space.

Parameters

address: Address of the register (0:127)

value: Value to set in the register (True, False)

Note: The lower range of the boolean output registers [0:63] is reserved for FieldBus/PLC interface usage.
The upper range [64:127] cannot be accessed by FieldBus/PLC interfaces, since it is reserved for external
RTDE clients.

>>> write_output_boolean_register(3, True)

Example command: write_output_boolean_register(3,True)

• Example Parameters:

• address = 3

• value = True

Script Directory 127 PolyScope X

18. Module interfaces

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

18.68. write_output_float_register(address, value)

Writes the float value into one of the output registers, which can also be accessed by a Field bus. Note,
uses it’s own memory space.

Parameters

address: Address of the register (0:47)

value: Value to set in the register (float)

Note: The lower part of the float output registers [0:23] is reserved for FieldBus/PLC interface usage. The
upper range [24:47] cannot be accessed by FieldBus/PLC interfaces, since it is reserved for external
RTDE clients.

>>> write_output_float_register(3, 37.68)

Example command: write_output_float_register(3,37.68)

• Example Parameters:

• address = 3

• value = 37.68

18.69. write_output_integer_register(address, value)

Writes the integer value into one of the output registers, which can also be accessed by a Field bus. Note,
uses it’s own memory space.

Parameters

address: Address of the register (0:47)

value: Value to set in the register [-2,147,483,648 : 2,147,483,647]

Note: The lower range of the integer output registers [0:23] is reserved for FieldBus/PLC interface usage.
The upper range [24:47] cannot be accessed by FieldBus/PLC interfaces, since it is reserved for external
RTDE clients.

>>> write_output_integer_register(3, 12)

Example command: write_output_integer_register(3,12)

• Example Parameters:

• address = 3

• value = 12

18.70. write_port_bit(address, value)

Writes one of the ports, which can also be accessed by Modbus clients

>>> write_port_bit(3,True)

PolyScope X 128 Script Directory

18. Module interfaces

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

Parameters

address: Address of the port (See port map on Support site, page "Modbus Server")

value: Value to be set in the register (True, False)

Example command: write_port_bit(3,True)

• Example Parameters:

• Address = 3

• Value = True

18.71. write_port_register(address, value)

Writes one of the ports, which can also be accessed by Modbus clients

>>> write_port_register(3,100)

Parameters

address: Address of the port (See port map on Support site, page "Modbus Server")

value: Value to be set in the port (0 : 65536) or (-32768 : 32767)

Example command: write_port_register(3,100)

• Example Parameters:

• Address = 3

• Value = 100

18.72. zero_ftsensor()

Zeroes the TCP force/torque measurement from the builtin force/torque sensor by subtracting the current
measurement from the subsequent.

18.73. request_boolean_from_primary_client(message)

Request input from operator. Polyscope shows dialog box with "yes" and "no" buttons.

Function blocks until operator selects option on the Polyscope screen.

NOTE: Operator can also stop program by pressing "Cancel" button

Parameters

message: A string with a message shown on Polyscope dialog box. Can not be empty.

Return Value

True or False: Value selected by the operator.

Script Directory 129 PolyScope X

18. Module interfaces

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

Example command: mark_part = request_boolean_from_primary_client("Should part
be marked?")

Show message to the operator, and save reply to mark_part variable

18.74. request_float_from_primary_client(message)

Request input from operator. Polyscope shows dialog box with decimal number entry field.

Function blocks until operator enters value on the Polyscope screen.

NOTE: Operator can also stop program by pressing "Cancel" button

Parameters

message: A string with a message shown on Polyscope dialog box. Can not be empty.

Return Value

Float: Value entered by the operator.

Example command: offset_mm = request_float_from_primary_client("Enter gripping
offset [mm]")

Show message to the operator, and save reply to offset_mm variable

18.75. request_integer_from_primary_client(message)

Request input from operator. Polyscope shows dialog box with integer number entry field.

Function blocks until operator enters value on the Polyscope screen.

NOTE: Operator can also stop program by pressing "Cancel" button

Parameters

message: A string with a message shown on Polyscope dialog box. Can not be empty.

Return Value

Integer: Value entered by the operator.

Example command: number_of_parts = request_integer_from_primary_client("Enter
number of parts")

Show message to the operator, and save reply to number_of_parts variable

18.76. request_string_from_primary_client(message)

Request input from operator. Polyscope shows dialog box with string entry field.

Function blocks until operator enters value on the Polyscope screen.

PolyScope X 130 Script Directory

18. Module interfaces

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

NOTE: Operator can also stop program by pressing "Cancel" button

Parameters

message: A string with a message shown on Polyscope dialog box. Can not be empty.

Return Value

String: Value entered by the operator.

Example command: part_name = request_string_from_primary_client("Enter name of
the part")

Show message to the operator, and save reply to part_name variable

Script Directory 131 PolyScope X

18. Module interfaces

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

19. Module ioconfiguration

19.1. modbus_set_runstate_dependent_choice(signal_
name, runstate_choice)

Sets the output signal levels depending on the state of the program.

Parameters

signal_name:

A string identifying a digital or register output signal that in advance has been added. Can not be empty.

state:

0: Preserve signal state,

1: Set signal Low when program is not running,

2: Set signal High when program is not running,

3: Set signal High when program is running and low when it is stopped,

4: Set signal Low when program terminates unscheduled,

5: Set signal High from the moment a program is started and Low when a program terminates
unscheduled.

Note: An unscheduled program termination is caused when a Protective stop, Fault, Violation or Runtime
exception occurs.

Example command:

modbus_set_runstate_dependent_choice("output2", 3)

• Example Parameters:

• Signal name = output2

• Runstate dependent choice = 3 ! set Low when a program is stopped and High when a
program is running

19.2. set_analog_outputdomain(port, domain)

Set domain of analog outputs

Parameters

port: analog output port number

domain: analog output domain: 0: 4-20mA, 1: 0-10V

Example command: set_analog_outputdomain(1,1)

PolyScope X 132 Script Directory

19. Module ioconfiguration

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

• Example Parameters:

• port is analog output port 1 (on controller)

• domain = 1 (0-10 volts)

19.3. set_configurable_digital_input_action(port, action)

Using this method sets the selected configurable digital input register to either a "default" or "freedrive"
action.

See also:

• set_input_actions_to_default

• set_standard_digital_input_action

• set_tool_digital_input_action

• set_gp_boolean_input_action

Parameters

port: The configurable digital input port number. (integer)

action: The type of action. The action can either be "default" or "freedrive". (string)

Example command: set_configurable_digital_input_action(0, "freedrive")

• Example Parameters:

• n is the configurable digital input register 0

• f is set to "freedrive" action

19.4. set_gp_boolean_input_action(port, action)

Using this method sets the selected gp boolean input register to either a "default" or "freedrive" action.

Parameters

port: The gp boolean input port number. integer: [0:127]

action: The type of action. The action can either be "default" or "freedrive". (string)

Note: The lower range of the boolean input registers [0:63] is reserved for FieldBus/PLC interface usage.
The upper range [64:127] cannot be accessed by FieldBus/PLC interfaces, since it is reserved for external
RTDE clients.

See also:

set_input_actions_to_default

set_standard_digital_input_action

set_configurable_digital_input_action

set_tool_digital_input_action

Example command: set_gp_boolean_input_action(64, "freedrive")

Script Directory 133 PolyScope X

19. Module ioconfiguration

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

• Example Parameters:

• n is the gp boolean input register 0

• f is set to "freedrive" action

19.5. set_input_actions_to_default()

Using this method sets the input actions of all standard, configurable, tool, and gp_boolean input registers
to "default" action.

See also:

set_standard_digital_input_action

set_configurable_digital_input_action

set_tool_digital_input_action

set_gp_boolean_input_action

Example command: set_input_actions_to_default()

19.6. set_runstate_configurable_digital_output_to_value
(outputId, state)

Using this method assigns the output to one of the states. This will set the output signal level depending on
the state.

Example: Set configurable digital output 5 to high when program is not running.

>>> set_runstate_configurable_digital_output_to_value(5, 2)

Parameters

outputId:

The output signal number (id), integer: [0:7]

state:

0: Preserve signal state,

1: Set signal Low when program is not running,

2: Set signal High when program is not running,

3: Set signal High when program is running and low when it is stopped,

4: Set signal Low when program terminates unscheduled,

5: Set signal High from the moment a program is started and Low when a program terminates
unscheduled,

6: Set signal High when the robot has drive power,

7: Set signal Low when the robot has drive power.

PolyScope X 134 Script Directory

19. Module ioconfiguration

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

Note: An unscheduled program termination is caused when a Protective stop, Fault, Violation or Runtime
exception occurs.

Example command:

set_runstate_configurable_digital_output_to_value(5, 2)

• Example Parameters:

• outputid = configurable digital output on port 5

• Runstate choice = 4 ! configurable digital output on port 5 goes low when a program is
terminated unscheduled.

19.7. set_runstate_gp_boolean_output_to_value
(outputId, state)

Using this method assigns the output to one of the states. This will set the output value depending on the
state.

Parameters

outputId: The output signal number (id), integer: [0:127]

state:

0: Preserve signal state,

1: Set signal to False when program is not running,

2: Set signal to True when program is not running,

3: Set signal to True when program is running and False when it is stopped,

4: Set signal to False when program terminates unscheduled,

5: Set signal to True from the moment a program is started and False when a program terminates
unscheduled,

6: Set signal to True when the robot has drive power,

7: Set signal to False when the robot has drive power.

Notes:

• The lower range of the boolean output registers [0:63] is reserved for FieldBus/PLC interface
usage. The upper range [64:127] cannot be accessed by FieldBus/PLC interfaces, since it is
reserved for external RTDE clients.

• An unscheduled program termination is caused when a Protective stop, Fault, Violation or Runtime
exception occurs.

Example command:

set_runstate_gp_boolean_output_to_value(64, 2)

• Example Parameters:

• outputid = output on port 64

• Runstate choice = 2 ! sets signal on port 64 to True when program is not running

Script Directory 135 PolyScope X

19. Module ioconfiguration

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

19.8. set_runstate_standard_analog_output_to_value
(outputId, state)

Using this method assigns the output to one of the states. This will set the output signal level depending on
the state.

Example: Set standard analog output 1 to high when program is not running.

>>> set_runstate_standard_analog_output_to_value(1, 2)

Parameters

outputId: The output signal number (id), integer: [0:1]

state:

0: Preserve signal state,

1: Set signal Low when program is not running,

2: Set signal High when program is not running,

3: Set signal High when program is running and low when it is stopped,

4: Set signal Low when program terminates unscheduled,

5: Set signal High from the moment a program is started and Low when a program terminates
unscheduled,

6: Set signal High when the robot has drive power,

7: Set signal Low when the robot has drive power.

Note: An unscheduled program termination is caused when a Protective stop, Fault, Violation or Runtime
exception occurs.

Example command:

set_runstate_standard_analog_output_to_value(1, 2)

• Example Parameters:

• outputid = standard analog output on port 1

• Runstate choice = 2 ! analog output on port 1 goes High when program is not running

19.9. set_runstate_standard_digital_output_to_value
(outputId, state)

Using this method assigns the output to one of the states. This will set the output signal level depending on
the state.

Example: Set standard digital output 5 to high when program is not running.

>>> set_runstate_standard_digital_output_to_value(5, 2)

Parameters

outputId: The output signal number (id), integer: [0:7]

PolyScope X 136 Script Directory

19. Module ioconfiguration

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

state:

0: Preserve signal state,

1: Set signal Low when program is not running,

2: Set signal High when program is not running,

3: Set signal High when program is running and low when it is stopped,

4: Set signal Low when program terminates unscheduled,

5: Set signal High from the moment a program is started and Low when a program terminates
unscheduled,

6: Set signal High when the robot has drive power,

7: Set signal Low when the robot has drive power.

Note: An unscheduled program termination is caused when a Protective stop, Fault, Violation or Runtime
exception occurs.

Example command:

set_runstate_standard_digital_output_to_value(5, 2)

• Example Parameters:

• outputid = standard digital output on port 1

• Runstate choice = 2 ! sets digital output on port 1 to High when program is not running

19.10. set_runstate_tool_digital_output_to_value
(outputId, state)

Sets the output signal level depending on the state of the program (running or stopped).

Example: Set tool digital output 1 to high when program is not running.

>>> set_runstate_tool_digital_output_to_value(1, 2)

Parameters

outputId:

The output signal number (id), integer: [0:1]

state:

0: Preserve signal state,

1: Set signal Low when program is not running,

2: Set signal High when program is not running,

3: Set signal High when program is running and low when it is stopped,

4: Set signal Low when program terminates unscheduled,

5: Set signal High from the moment a program is started and Low when a program terminates
unscheduled.

Script Directory 137 PolyScope X

19. Module ioconfiguration

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

Note: An unscheduled program termination is caused when a Protective stop, Fault, Violation or Runtime
exception occurs.

Example command:

set_runstate_tool_digital_output_to_value(1, 2)

• Example Parameters:

• outputid = tool digital output on port 1

• Runstate choice = 2 ! digital output on port 1 goes High when program is not running

19.11. set_standard_analog_input_domain(port, domain)

Set domain of standard analog inputs in the controller box

For the tool inputs see set_tool_analog_input_domain.

Parameters

port: analog input port number: 0 or 1

domain: analog input domains: 0: 4-20mA, 1: 0-10V

Example command: set_standard_analog_input_domain(1,0)

• Example Parameters:

• port = analog input port 1

• domain = 0 (4-20 mA)

19.12. set_standard_digital_input_action(port, action)

Using this method sets the selected standard digital input register to either a "default" or "freedrive" action.

See also:

• set_input_actions_to_default

• set_configurable_digital_input_action

• set_tool_digital_input_action

• set_gp_boolean_input_action

Parameters

port: The standard digital input port number. (integer)

action: The type of action. The action can either be "default" or "freedrive". (string)

Example command: set_standard_digital_input_action(0, "freedrive")

• Example Parameters:

• n is the standard digital input register 0

• f is set to "freedrive" action

PolyScope X 138 Script Directory

19. Module ioconfiguration

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

19.13. set_tool_analog_input_domain(port, domain)

Set domain of analog inputs in the tool

For the controller box inputs see set_standard_analog_input_domain.

Parameters

port: analog input port number: 0 or 1

domain: analog input domains: 0: 4-20mA, 1: 0-10V

Example command: set_tool_analog_input_domain(1,1)

• Example Parameters:

• port = tool analog input 1

• domain = 1 (0-10 volts)

19.14. set_tool_digital_input_action(port, action)

Using this method sets the selected tool digital input register to either a "default" or "freedrive" action.

See also:

• set_input_actions_to_default

• set_standard_digital_input_action

• set_configurable_digital_input_action

• set_gp_boolean_input_action

Parameters

port: The tool digital input port number. (integer)

action: The type of action. The action can either be "default" or "freedrive". (string)

Example command: set_tool_digital_input_action(0, "freedrive")

• Example Parameters:

• n is the tool digital input register 0

• f is set to "freedrive" action

Script Directory 139 PolyScope X

19. Module ioconfiguration

C
op
yr
ig
ht
©
20
09
–2
02
5
by

U
ni
ve
rs
al
 R
ob
ot
s
A
/S
.A

ll
rig
ht
s
re
se
rv
ed
.

Software Name: PolyScope X
Software Version: 10.9
Document Version:10.12.17

